Ergebnis der Suche (12)

Ergebnis der Suche nach: ( ( (Freitext: FLASH-VIDEO) und (Schlagwörter: ABLEITUNG) ) und (Schlagwörter: VIDEO) ) und (Quelle: "Bildungsmediathek NRW")

Es wurden 368 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • Beispielaufgaben zu Ableitungen | A.13.06

    Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008796" }

  • Mit der Produkt-Integration eine Funktion mit zwei Faktoren integrieren, Beispiel 1 | 14.05

    Wenn man die Stammfunktion von einem Produkt braucht, so benötigt man eine spezielle Regel, nämlich die Produktregel für die Aufleitung. Diese heißt „Produktintegration“ oder auch „partielle Integration“. Diese Produkt-Integration ist eine Umkehrung der Produktregel für die Ableitung.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008843" }

  • Mit der Produkt-Integration eine Funktion mit zwei Faktoren integrieren | 14.05

    Wenn man die Stammfunktion von einem Produkt braucht, so benötigt man eine spezielle Regel, nämlich die Produktregel für die Aufleitung. Diese heißt „Produktintegration“ oder auch „partielle Integration“. Diese Produkt-Integration ist eine Umkehrung der Produktregel für die Ableitung.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008842" }

  • Wurzelfunktion ableiten, Beispiel 3 | A.45.01

    Um eine Wurzel abzuleiten, muss man sie umschreiben. Die normale Wurzel schreibt man um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die Kettenregel an und kann differenzieren (ableiten). (Die Berechnung der Definitionsmenge ist zwingend erforderlich.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009584" }

  • Gebrochen-rationale Funktion / Bruchfunktionen: kurze Einführung | A.43

    Bruchfunktionen sind natürlich Funktionen in Bruchform. Tatsächlich heißen sie „gebrochen-rationale Funktionen“ oder „gebrochene Funktionen“. Das typische Merkmal dieser Funktionen sind senkrechte Asymptoten (Polstellen), die das Schaubild in zwei oder mehrere Teile aufteilt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009500" }

  • Mit der Produkt-Integration eine Funktion mit zwei Faktoren integrieren, Beispiel 2 | 14.05

    Wenn man die Stammfunktion von einem Produkt braucht, so benötigt man eine spezielle Regel, nämlich die Produktregel für die Aufleitung. Diese heißt „Produktintegration“ oder auch „partielle Integration“. Diese Produkt-Integration ist eine Umkehrung der Produktregel für die Ableitung.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008844" }

  • Integralfunktion bestimmen, Beispiel 3 | A.18.10

    Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008986" }

  • Trigonometrische Funktionen: Ableitung, Beispiel 2 | A.42.04

    Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009469" }

  • Gebrochen-rationale Funktionen: So leitet man eine Bruchfunktion ab, Beispiel 3 | A.43.02

    Die Ableitung eines Bruchs geht mit der sogenannten „Quotientenregel“. Der Zähler (oben) wird „u“ genannt, der Nenner (unten) wird „v“ genannt. Die Formel für Ableitung lautet: f'(x)=(u'·v-u·v')/(v²).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009508" }

  • Polynom bzw. ganzrationale Funktion ableiten, Beispiel 5 | A.13.01

    Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das „x“, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008766" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite