Ergebnis der Suche (7)

Ergebnis der Suche nach: ( (Freitext: FLASH-VIDEO) und (Quelle: "Bildungsmediathek NRW") ) und (Schlagwörter: KOORDINATE)

Es wurden 581 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
61 bis 70
  • Horner-Schema, Beispiel 5 | A.12.08

    Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008745" }

  • Horner-Schema, Beispiel 6 | A.12.08

    Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008746" }

  • Verschieben von Punkten, Beispiel 3 | A.01.03

    Punkte verschiebt man ganz einfach, Beim Verschieben nach links oder rechts ändert sich der x-Wert des Punktes, bei Verschiebungen hoch oder runter ändert sich der y-Wert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008318" }

  • Parabel verschieben, Beispiel 2 | A.04.08

    Eine Parabel verschiebt man am einfachsten, indem man zuerst den Scheitelpunkt der Parabel berechnet (z.B. über quadratische Ergänzung), diesen Scheitelpunkt dann verschiebt und mit dem verschobenen Scheitelform dann wieder die Scheitelform der Parabel aufstellt (und die dann in Normalform umwandelt, falls des gewünscht ist).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008492" }

  • Parabel verschieben | A.04.08

    Eine Parabel verschiebt man am einfachsten, indem man zuerst den Scheitelpunkt der Parabel berechnet (z.B. über quadratische Ergänzung), diesen Scheitelpunkt dann verschiebt und mit dem verschobenen Scheitelform dann wieder die Scheitelform der Parabel aufstellt (und die dann in Normalform umwandelt, falls des gewünscht ist).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008490" }

  • Entfernung berechnen, Beispiel 3 | A.01.04

    Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2–x1)^2+(y2–y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008322" }

  • Entfernung berechnen, Beispiel 1 | A.01.04

    Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2–x1)^2+(y2–y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008320" }

  • Wurzelfunktion: Wurzelgleichungen lösen | A.45.05

    Wurzelgleichungen löst man zuerst nach der Wurzel auf. Danach sollte man quadrieren man und sollte nach „x“ auflösen können um so die Nullstelle zu erhalten. So weit die Theorie. Tja, die ein oder andere Gleichung ist vielleicht etwas komplizierter (nur minimal komplizierter).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009597" }

  • Mit der Funktionsgleichung f(x) den y-Wert berechnen | A.11.01

    Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur „Wert der Funktion“ in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008623" }

  • Mittelpunkt berechnen, Beispiel 4 | A.01.01

    Den Mittelpunkt von zwei gegebenen Punkten berechnet man im Koordinatensystem sehr einfach. Man bestimmt die Mitte der x-Werte und die Mitte der y-Werte. (Man bestimmt z.B. die Mitte von zwei x-Werten, indem man die beiden x-Werte zusammenzählt und das Ergebnis durch 2 teilt).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008308" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite