Ergebnis der Suche (11)

Ergebnis der Suche nach: (Freitext: EXPONENTIALFUNKTION) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 154 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite

Treffer:
101 bis 110
  • Differentialgleichung: Was ist eine DGL und wie rechnet man damit? | A.30.02

    Eine Differenzialgleichung (kurz: DGL) ist eine Gleichung in welcher Ableitung und Funktion auftauchen. Eine DGL beschreibt daher einen Zusammenhang zwischen der Änderung des Bestands und dem Bestand selber.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009305" }

  • So leitet man vermischte Funktionen ab, Beispiel 2 | A.13.07

    In den bisherigen Kapiteln haben wir hauptsächlich Polynome („normale“ Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008805" }

  • So leitet man vermischte Funktionen ab, Beispiel 1 | A.13.07

    In den bisherigen Kapiteln haben wir hauptsächlich Polynome („normale“ Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008804" }

  • Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 3 | A.16.02

    Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008910" }

  • Exponentielles Wachstum berechnen, Beispiel 2 | A.07.02

    Exponentielles Wachstum kennzeichnet sich dadurch, dass immer der gleiche prozentuale Anteil dazu kommt (typisches Beispiel: ein Bankkonto, bei welchem man in jedem Jahr Prozente bekommt, die Zinsen und Zinseszinsen). Es wird durch eine Exponentialfunktion der Form B(t)=B(0)*q^t beschrieben (Hierbei ist „B(0)“ der Anfangswert, „B(t)“ der Bestand nach Ablauf der Zeit „t“, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008610" }

  • Exponentielles Wachstum berechnen | A.07.02

    Exponentielles Wachstum kennzeichnet sich dadurch, dass immer der gleiche prozentuale Anteil dazu kommt (typisches Beispiel: ein Bankkonto, bei welchem man in jedem Jahr Prozente bekommt, die Zinsen und Zinseszinsen). Es wird durch eine Exponentialfunktion der Form B(t)=B(0)*b^x beschrieben (Hierbei ist „B(0)“ der Anfangswert, „B(t)“ der Bestand nach Ablauf der Zeit „t“, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008608" }

  • Exponentielles Wachstum berechnen, Beispiel 3 | A.07.02

    Exponentielles Wachstum kennzeichnet sich dadurch, dass immer der gleiche prozentuale Anteil dazu kommt (typisches Beispiel: ein Bankkonto, bei welchem man in jedem Jahr Prozente bekommt, die Zinsen und Zinseszinsen). Es wird durch eine Exponentialfunktion der Form B(t)=B(0)*q^t beschrieben (Hierbei ist „B(0)“ der Anfangswert, „B(t)“ der Bestand nach Ablauf der Zeit „t“, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008611" }

  • Exponentielles Wachstum berechnen, Beispiel 1 | A.07.02

    Exponentielles Wachstum kennzeichnet sich dadurch, dass immer der gleiche prozentuale Anteil dazu kommt (typisches Beispiel: ein Bankkonto, bei welchem man in jedem Jahr Prozente bekommt, die Zinsen und Zinseszinsen). Es wird durch eine Exponentialfunktion der Form B(t)=B(0)*q^t beschrieben (Hierbei ist „B(0)“ der Anfangswert, „B(t)“ der Bestand nach Ablauf der Zeit „t“, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008609" }

  • Potenz und Potenzgesetze


    Details  
    { "Select.HE": "DE:Select.HE:1561483" }

  • Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 5 | A.30.04

    Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl „k“ heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009321" }

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite