Ergebnis der Suche (3)

Ergebnis der Suche nach: (Freitext: ERWARTUNGSWERT) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 59 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Median, Modus, Mittelwert und wie man richtig damit rechnet; Beispiel 2 | W.11.03

    Was ein Mittelwert ( = Durchschnitt = Erwartungswert ) ist, weiß wohl jeder. Man zählt alles zusammen und teilt das Ergebnis durch die Anzahl. (Der Erwartungswert ist in der Wahrscheinlichkeitsrechnung eine Vorhersage für einen unbekannten Durchschnittswert). Ein Modus (oder Modalwert) ist derjenige Wert, der am häufigsten auftaucht. Der Median ist der Wert, der in der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010687" }

  • Median, Modus, Mittelwert und wie man richtig damit rechnet; Beispiel 1 | W.11.03

    Was ein Mittelwert ( = Durchschnitt = Erwartungswert ) ist, weiß wohl jeder. Man zählt alles zusammen und teilt das Ergebnis durch die Anzahl. (Der Erwartungswert ist in der Wahrscheinlichkeitsrechnung eine Vorhersage für einen unbekannten Durchschnittswert). Ein Modus (oder Modalwert) ist derjenige Wert, der am häufigsten auftaucht. Der Median ist der Wert, der in der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010686" }

  • Tschebyscheff-Ungleichung, Beispiel 2 | Wahrscheinlichkeitsrechnung Formeln W.15.07

    Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010780" }

  • Tschebyscheff-Ungleichung, Beispiel 1 | Wahrscheinlichkeitsrechnung Formeln W.15.07

    Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010779" }

  • Tschebyscheff-Ungleichung, Beispiel 3 | Wahrscheinlichkeitsrechnung Formeln W.15.07

    Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010781" }

  • Tschebyscheff-Ungleichung | Wahrscheinlichkeitsrechnung Formeln W.15.07

    Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010778" }

  • Hypergeometrische Verteilung: Beispiel Lotto-Problem, Teil 1 | W.17.02 [Stochastik]

    Eine Standardanwendung der hypergeometrischen Verteilung: das Lotto-Problem. Beim normalen Lotto hat man insgesamt 49 Kugeln, 6 davon werden von der Lottogesellschaft als „Richtige“ ausgesucht werden. Für die Rechnung unterteilt man die 49 Zahlen daher in die Gruppe der 6 Richtigen und 43 Falschen. Wenn nun die W.S. von einer bestimmten Zahl von Richtigen gefragt ist, kann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010806" }

  • Hypergeometrische Verteilung: Beispiel Lotto-Problem, Teil 5 | W.17.02 [Stochastik]

    Eine Standardanwendung der hypergeometrischen Verteilung: das Lotto-Problem. Beim normalen Lotto hat man insgesamt 49 Kugeln, 6 davon werden von der Lottogesellschaft als „Richtige“ ausgesucht werden. Für die Rechnung unterteilt man die 49 Zahlen daher in die Gruppe der 6 Richtigen und 43 Falschen. Wenn nun die W.S. von einer bestimmten Zahl von Richtigen gefragt ist, kann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010810" }

  • Hypergeometrische Verteilung: Beispiel Lotto-Problem, Teil 3 | W.17.02 [Stochastik]

    Eine Standardanwendung der hypergeometrischen Verteilung: das Lotto-Problem. Beim normalen Lotto hat man insgesamt 49 Kugeln, 6 davon werden von der Lottogesellschaft als „Richtige“ ausgesucht werden. Für die Rechnung unterteilt man die 49 Zahlen daher in die Gruppe der 6 Richtigen und 43 Falschen. Wenn nun die W.S. von einer bestimmten Zahl von Richtigen gefragt ist, kann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010808" }

  • Hypergeometrische Verteilung: Beispiel Lotto-Problem, Teil 4 | W.17.02 [Stochastik]

    Eine Standardanwendung der hypergeometrischen Verteilung: das Lotto-Problem. Beim normalen Lotto hat man insgesamt 49 Kugeln, 6 davon werden von der Lottogesellschaft als „Richtige“ ausgesucht werden. Für die Rechnung unterteilt man die 49 Zahlen daher in die Gruppe der 6 Richtigen und 43 Falschen. Wenn nun die W.S. von einer bestimmten Zahl von Richtigen gefragt ist, kann ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010809" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 Eine Seite vor Zur letzten Seite