Ergebnis der Suche (6)

Ergebnis der Suche nach: ( ( ( (Freitext: E-LEARNING) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: WINKELFUNKTION) ) und (Bildungsebene: "SEKUNDARSTUFE I") ) und (Schlagwörter: KOORDINATE)

Es wurden 94 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite

Treffer:
51 bis 60
  • Komplexe Zahlen; Kartesische Koordinaten; Polarform; Exponentialdarstellung, Beispiel 2 | A.54.01

    Das „Konjugierte“ eine komplexen Zahl erhält man, wenn man das Vorzeichen vom Imaginärteil ändert. Zeichnerisch erhält man die konjugierte Zahl, indem man die Ausgangszahl in die komplexe Zahlenebene einzeichnet und dann an der waagerechten Achse spiegelt. Es gibt drei wichtige Formen, in welcher man eine komplexe Zahl darstellen kann. 1) z=a+bi ist die „Normalform“, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009725" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009735" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 4 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009739" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 3 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009705" }

  • Kurvendiskussion von Kurvenscharen mit CAS | A.24.03

    Wir behandeln hier verschiedene Fragestellungen, die spezifisch für Kurvenscharen sind und lösen diese ausnahmslos mit dem CAS. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009149" }

  • Funktionsanalyse einer trigonometrischen Funktion | A.42.11

    Ein paar Beispiele von Funktionsuntersuchungen von trigonometrischen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Periode der Funktion und fertigen eine Skizze.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009496" }

  • Kurvendiskussion von Kurvenscharen mit CAS, Beispiel 8 | A.24.03

    Wir behandeln hier verschiedene Fragestellungen, die spezifisch für Kurvenscharen sind und lösen diese ausnahmslos mit dem CAS. Die eigentliche Funktionsanalyse (= Funktionsuntersuchung = Kurvendiskussion) machen wir hier nicht, wir übernehmen alle notwendigen Zwischenergebnisse aus Kapitel A.19

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009157" }

  • Funktionen Schaubildern zuordnen, Beispiel 4 | A.27.02

    Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009212" }

  • Funktionen Schaubildern zuordnen, Beispiel 5 | A.27.02

    Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009213" }

  • Funktionen Schaubildern zuordnen | A.27.02

    Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009208" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite