Ergebnis der Suche (51)

Ergebnis der Suche nach: ( ( (Freitext: E-LEARNING) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: VIDEO) ) und (Schlagwörter: KOORDINATE)

Es wurden 581 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 45 46 47 48 49 50 51 52 53 54 55 56 Eine Seite vor Zur letzten Seite

Treffer:
501 bis 510
  • Komplexe Zahlen addieren, multiplizieren, konjugieren; Beispiel 4 | A.54.02

    Der Trick beim Addieren oder Multiplizieren von komplexen Zahlen besteht darin, die Zahlen vorher immer in die geschickte Form umzuwandeln. Zum „Addieren“ sollten die komplexen Zahlen immer eine kartesische Form haben (falls sie also in Polarform gegeben sind, umwandeln!). Zum „Multiplizieren“ sollten die komplexen Zahlen immer eine Polarform haben (falls sie also in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009730" }

  • Schaubild einer gebrochen-rationalen Funktion erstellen | A.43.08

    Gebrochen-rationale Funktionen zeichnet man am besten über die Asymptoten. Man zeichnet also zuerst die Asymptoten, danach eventuell Nullstellen (falls man Hoch-, Tief- oder Wendepunkte kennt zeichnet man diese ebenfalls ein) und versucht die Funktion zu zeichnen. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen. Das sollte für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009525" }

  • DGL höherer Ordnung über charakteristisches Polynom lösen | A.53.04

    Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009711" }

  • Extremwertaufgaben, schwierige Übungen, Beispiel 1 | A.21.09

    Leider gehören viele der Extremwertaufgaben nicht zu den letztgenannten Standardfällen. Viele der Extremwertaufgaben sind immer wieder neue, hässliche Typen. Hier ein Versuch ein paar davon vorzurechnen. In den Beispielen geht es um die Fläche von einem beliebigen Dreieck, Fläche vom Trapez und zwei senkrechten Geraden die aus einer Fläche einen Streifen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009068" }

  • Schaubild einer gebrochen-rationalen Funktion erstellen, Beispiel 2 | A.43.08

    Gebrochen-rationale Funktionen zeichnet man am besten über die Asymptoten. Man zeichnet also zuerst die Asymptoten, danach eventuell Nullstellen (falls man Hoch-, Tief- oder Wendepunkte kennt zeichnet man diese ebenfalls ein) und versucht die Funktion zu zeichnen. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen. Das sollte für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009527" }

  • DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 2 | A.53.04

    Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009713" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 3 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009738" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 4 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009739" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 6 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009741" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 1 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009736" }

Seite:
Zur ersten Seite Eine Seite zurück 45 46 47 48 49 50 51 52 53 54 55 56 Eine Seite vor Zur letzten Seite