Ergebnis der Suche (10)

Ergebnis der Suche nach: ( ( (Freitext: E-LEARNING) und (Schlagwörter: VIDEO) ) und (Schlagwörter: ANALYSIS) ) und (Schlagwörter: ABLEITUNG)

Es wurden 368 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1d: Wendepunkte berechnen

    Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008574" }

  • Ableitung von komplizierten gebrochen-rationalen Funktionen, Beispiel 1 | A.43.03

    Für besonders hässliche Ableitung braucht man die Quotientenregel und zusätzlich noch Ketten- und/oder Produktregel. Na ja.. hässlich eben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009510" }

  • Integralfunktion bestimmen, Beispiel 4 | A.18.10

    Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008987" }

  • Beispielaufgaben zu Ableitungen, Beispiel 1 | A.13.06

    Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008797" }

  • Beispielaufgaben zu Ableitungen, Beispiel 3 | A.13.06

    Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008799" }

  • Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1a: wir zeichnen die Funktion

    Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008571" }

  • Tangentengleichung / Normalengleichung bestimmen über Tangentenformel / Normalenformel, Beispiel 4

    Die beste Möglichkeit, eine Tangentengleichung bzw. Normalengleichungen zu bestimmen, geht über die Tangentenformel bzw. Normalenformel. Zwar sehen die Formel etwas umständlicher aus, als y=m*x+b, jedoch kann man auch hässliche Aufgaben damit recht gut lösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008875" }

  • Ableitung von komplizierten Wurzelfunktionen | A.45.02

    Bei hässlichen Ableitungen, die eine Wurzel enthalten, braucht man vermutlich eine der Ableitungsregeln, also die Produktregel oder evtl. Quotientenregel. Ziemlich sicher muss man die Wurzel auch noch umschreiben und dann mittels Kettenregel ableiten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009585" }

  • Integralfunktion bestimmen, Beispiel 2 | A.18.10

    Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008985" }

  • Trigonometrische Funktionen: Ableitung | A.42.04

    Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009467" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite