Ergebnis der Suche (2)

Ergebnis der Suche nach: ( (Freitext: E-GOVERNMENT) und (Systematikpfad: MATHEMATIK) ) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 227 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
11 bis 20
  • Senkrechte Asymptote berechnen, Beispiel 2 | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008899" }

  • Senkrechte Asymptote berechnen, Beispiel 5 | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008902" }

  • Senkrechte Asymptote berechnen, Beispiel 9 | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008906" }

  • Schaubild einer Ableitungsfunktion zeichnen / skizzieren | A.27.03

    Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte „NEW“-Tabelle ist schneller, funktioniert aber bei manchen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009215" }

  • Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen, Beispiel 1 | A.43.06

    Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009517" }

  • Lernvideo: Die Ableitung der natürlichen Exponentialfunktion

    In diesem Lernvideo von Flip the Classroom wird den Schülerinnen und Schülern zunächst gezeigt, welche Funktionen sie schon ableiten können und welche nicht. Dabei stellt sich heraus, dass Exponentialfunktionen wie z. B. f(x)=2x oder f(x)=4x noch nicht mit den bisherigen Regeln abgeleitet werden können. Dann wird die Eulersche Zahl e eingeführt und Aufgaben zu f(x)=ex ...

    Details  
    { "HE": [] }

  • Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 4 | A.24.01

    Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibt’s eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009137" }

  • e-Funktion (Mathematik)

    Die e-Funktion ist die natürliche Exponentialfunktion mit der Basis e, der Eulerschen Zahl. Ihre Umkehrfunktion ist der natürliche Logarithmus.

    Details  
    { "DBS": "DE:DBS:55974" }

  • Song: Beweis der Irrationalität von e

    In diesem Kurs werden u.a. folgende Fragen beantwortet: Wie leitet man die Exponentialfunktion y = ax ab? Was ist das Besondere an y = ex? Warum ist e ≈ 2,71828? Warum nennt man e die Eulersche Zahl?

    Details  
    { "HE": [] }

  • Leontief, Leontief-Formel y=(E–A)·x: leichte Übung, Teil a | M.06.02

    Es gibt nur eine wichtige Formel für das Leontief-Modell: y=(E–A)·x. Hierbei ist E die Einheitsmatrix, A die Input-Matrix, x ist die Gesamtproduktion und y ist die Marktabgabe (bzw. Marktvektor bzw. Konsumvektor). Diese Formel verwendet man um aus der Gesamtproduktion den Marktvektor zu berechnen oder umgekehrt. Eine jeweils einfache Aufgabe hilft uns das Ganze zu ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010225" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite