Ergebnis der Suche (4)

Ergebnis der Suche nach: (Freitext: DIFFERENZ) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 146 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
31 bis 40
  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 2 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009332" }

  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 5 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009335" }

  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 1 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009331" }

  • Beschränktes Wachstum mit Differentialgleichung berechnen, Beispiel 4 | A.30.06

    Die Differenzialgleichung vom begrenzten Wachstum (=beschränkten Wachstum) lautet: f'(t)=k*(G-f(t)). f'(t) ist die Zunahme (oder Abnahme) des Bestandes, G-f(t) heißt Sättigungsmanko und ist der Wert um welchen der Bestand noch zu- oder abnehmen kann (also die Differenz von Grenze und aktuellem Bestand). Damit sagt die Differenzialgleichung aus, dass die momentane ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009334" }

  • Parameterform einer Geradengleichung mit Ortsvektor und Stützvektor, Beispiel 1 | V.01.03

    Will man eine Gerade aufstellen, so braucht man zwei Punkte. Einen der beiden Punkte verwendet man als Stützvektor (das ist der erste Vektor, der auch Ortsvektor, Aufpunkt, Anbindungspunkt, etc.. heißt), die Differenz der beiden Punkte nimmt man als Richtungsvektor (dieser Vektor hat einen Parameter vorne dran). Die erhaltene Geradengleichung heißt Parameterform. Andere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010354" }

  • Parameterform einer Geradengleichung mit Ortsvektor und Stützvektor | V.01.03

    Will man eine Gerade aufstellen, so braucht man zwei Punkte. Einen der beiden Punkte verwendet man als Stützvektor (das ist der erste Vektor, der auch Ortsvektor, Aufpunkt, Anbindungspunkt, etc.. heißt), die Differenz der beiden Punkte nimmt man als Richtungsvektor (dieser Vektor hat einen Parameter vorne dran). Die erhaltene Geradengleichung heißt Parameterform. Andere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010353" }

  • Parameterform einer Geradengleichung mit Ortsvektor und Stützvektor, Beispiel 2 | V.01.03

    Will man eine Gerade aufstellen, so braucht man zwei Punkte. Einen der beiden Punkte verwendet man als Stützvektor (das ist der erste Vektor, der auch Ortsvektor, Aufpunkt, Anbindungspunkt, etc.. heißt), die Differenz der beiden Punkte nimmt man als Richtungsvektor (dieser Vektor hat einen Parameter vorne dran). Die erhaltene Geradengleichung heißt Parameterform. Andere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010355" }

  • Abstand windschiefer Geraden berechnen über Formel, Beispiel 2 | V.03.09

    Den Abstand von Geraden, die windschief sind, kann man auf zwei Arten berechnen. Der einfachste Weg geht wohl über die Formel. Aus den Richtungsvektoren der beiden Geraden erstellt man einen Normaleneinheitsvektoren. Diesen multipliziert man mit der Differenz der Stützvektoren und erhält so den Abstand. Leider, leider liefert die Formel die Lotfußpunkte nicht und die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010455" }

  • Abstand windschiefer Geraden berechnen über Formel, Beispiel 3 | V.03.09

    Den Abstand von Geraden, die windschief sind, kann man auf zwei Arten berechnen. Der einfachste Weg geht wohl über die Formel. Aus den Richtungsvektoren der beiden Geraden erstellt man einen Normaleneinheitsvektoren. Diesen multipliziert man mit der Differenz der Stützvektoren und erhält so den Abstand. Leider, leider liefert die Formel die Lotfußpunkte nicht und die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010456" }

  • Abstand windschiefer Geraden berechnen über Formel | V.03.09

    Den Abstand von Geraden, die windschief sind, kann man auf zwei Arten berechnen. Der einfachste Weg geht wohl über die Formel. Aus den Richtungsvektoren der beiden Geraden erstellt man einen Normaleneinheitsvektoren. Diesen multipliziert man mit der Differenz der Stützvektoren und erhält so den Abstand. Leider, leider liefert die Formel die Lotfußpunkte nicht und die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010453" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite