Ergebnis der Suche (8)

Ergebnis der Suche nach: (Freitext: BRUCH) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER")

Es wurden 211 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 2 3 4 5 6 7 8 9 10 11 12 13 Eine Seite vor Zur letzten Seite

Treffer:
71 bis 80
  • Asymptoten von komplizierten Exponentialfunktionen berechnen, Beispiel 2 | A.41.08

    Falls es sich bei der Funktion um einen Bruch handelt, muss man eventuell senkrechte Asymptoten in Betracht ziehen. Dieses geschieht indem man den Nenner Null setzt. Das Gleiche gilt, falls in der e-Funktion noch zusätzlich ein Logarithmus auftaucht. Das Argument des Logarithmus wird Null gesetzt, die Lösung ist wiederum eine senkrechte Asymptote. Grenzwerte, also ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009437" }

  • Ungleichungen mit Brüchen | A.26.04

    Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009194" }

  • Brüche addieren, Brüche subtrahieren | B.02.03

    Will man Brüche addieren oder Brüche subtrahieren (Plus- oder Minusrechnung), braucht man den Hauptnenner. D.h. man muss jeden einzelnen Bruch derart erweitern, dass alle Brüche den gleichen Nenner haben (der Nenner ist das Untere). Ist das geschehen, wird’s einfach: der Nenner vom Ergebnis ist einfach der Hauptnenner, den Zähler vom Ergebnis erhält man, indem man alle ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009822" }

  • Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen, Beispiel 3

    Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009532" }

  • Brüche addieren, Brüche subtrahieren, Beispiel 1 | B.02.03

    Will man Brüche addieren oder Brüche subtrahieren (Plus- oder Minusrechnung), braucht man den Hauptnenner. D.h. man muss jeden einzelnen Bruch derart erweitern, dass alle Brüche den gleichen Nenner haben (der Nenner ist das Untere). Ist das geschehen, wird’s einfach: der Nenner vom Ergebnis ist einfach der Hauptnenner, den Zähler vom Ergebnis erhält man, indem man alle ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009823" }

  • Brüche addieren, Brüche subtrahieren, Beispiel 3 | B.02.03

    Will man Brüche addieren oder Brüche subtrahieren (Plus- oder Minusrechnung), braucht man den Hauptnenner. D.h. man muss jeden einzelnen Bruch derart erweitern, dass alle Brüche den gleichen Nenner haben (der Nenner ist das Untere). Ist das geschehen, wird’s einfach: der Nenner vom Ergebnis ist einfach der Hauptnenner, den Zähler vom Ergebnis erhält man, indem man alle ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009825" }

  • Brüche addieren, Brüche subtrahieren, Beispiel 4 | B.02.03

    Will man Brüche addieren oder Brüche subtrahieren (Plus- oder Minusrechnung), braucht man den Hauptnenner. D.h. man muss jeden einzelnen Bruch derart erweitern, dass alle Brüche den gleichen Nenner haben (der Nenner ist das Untere). Ist das geschehen, wird’s einfach: der Nenner vom Ergebnis ist einfach der Hauptnenner, den Zähler vom Ergebnis erhält man, indem man alle ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009826" }

  • Ungleichungen mit Brüchen, Beispiel 3 | A.26.04

    Wenn Ungleichungen anfangen hässlich zu werden, ist das meist mit Brüchen verbunden. Man braucht im Normalfall eine Fallunterscheidung (oder mehrere), Alles nicht schön. Man kann die Fallunterscheidungen umgehen, wenn man alle Zähler- und alle Nennernullstellen berechnet, diese als Intervallgrenzen verwendet und nun für jedes entstandene Intervall prüft, ob die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009197" }

  • Ableitung von komplizierten Logarithmusfunktionen, Beispiel 1 | A.44.03

    Für besonders hässliche Ableitungen braucht man normalerweise noch die Kettenregel, die Produktregel und eventuell noch die Quotientenregel. Schlimmer geht’s immer.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009547" }

  • Ableitung von komplizierten Logarithmusfunktionen, Beispiel 3 | A.44.03

    Für besonders hässliche Ableitung braucht man normalerweise noch die Kettenregel, die Produktregel und eventuell noch die Quotientenregel. Schlimmer geht’s immer.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009549" }

Seite:
Zur ersten Seite Eine Seite zurück 2 3 4 5 6 7 8 9 10 11 12 13 Eine Seite vor Zur letzten Seite