Ergebnis der Suche (13)

Ergebnis der Suche nach: (Freitext: BEISPIEL) und (Schlagwörter: "FUNKTION (MATHEMATIK)")

Es wurden 803 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 7 8 9 10 11 12 13 14 15 16 17 18 Eine Seite vor Zur letzten Seite

Treffer:
121 bis 130
  • Mit Integration durch Substitution eine verkettete Funktion integrieren, Beispiel 6 | A.14.06

    Braucht man die Stammfunktion einer verschachtelten Funktionen und das Innere der Klammer ist nicht linear (also nicht m*x+b), kann man die lineare Substitution nicht mehr anwenden. Man braucht die normale (etwas schwerere) Substitutionsregel. Vorgehensweise: man sucht eine Klammer, die innere Ableitung (oder Vielfache davon) dieser Klammer muss irgendwo in der Funktion ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008855" }

  • Ableitung der Umkehrfunktion, Beispiel 1 | A.28.04

    Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009259" }

  • Wurzel ableiten; Brüche ableiten, Beispiel 1 | A.13.02

    Viele Wurzeln und Brüche kann man umschreiben und so die Ableitung vereinfachen. Brüche: wenn oben kein „x“ steht, sondern nur Zahlen und unten weder „+“ noch „–“, kann man „x“ von unten aus dem Nenner hoch in den Zähler bringen (indem man das Vorzeichen der Hochzahl wechselt). Wurzeln: man schreibt die Wurzel um in Klammer hoch 0,5. (Dritte Wurzeln werden zu „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008769" }

  • Tangente bestimmen über Tangentensteigung, Beispiel 2 | A.15.01

    Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält „b“. Für die fertige Geradengleichung der Tangente setzt man „m“ und „b“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008866" }

  • Mit Integration durch Substitution eine verkettete Funktion integrieren, Beispiel 4 | A.14.06

    Braucht man die Stammfunktion einer verschachtelten Funktionen und das Innere der Klammer ist nicht linear (also nicht m*x+b), kann man die lineare Substitution nicht mehr anwenden. Man braucht die normale (etwas schwerere) Substitutionsregel. Vorgehensweise: man sucht eine Klammer, die innere Ableitung (oder Vielfache davon) dieser Klammer muss irgendwo in der Funktion ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008853" }

  • Linearfaktorzerlegung über Nullstellen, Satz von Vieta; Beispiel 1 | B.05.02

    Wenn man bei der Linearfaktorzerlegung weder Ausklammern kann, noch eine binomische Formel anwenden kann, so hat man noch eine Chance. Man kann die Zerlegung über die Nullstellen versuchen. Dazu braucht man natürlich die Nullstellen der Funktion. Nehmen wir an, die Nullstellen sind x1, x2, x3, und die Zahl vor der höchsten Potenz heißt „a“. Nun kann man die Funktion ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009885" }

  • Logarithmusfunktion: Gleichungen lösen, Beispiel 1 | A.44.05

    Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch „x“ oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009555" }

  • Polynome, Parabeln höherer Ordnung, ganzrationale Funktionen, Beispiel 1 | A.06.01

    „Polynome“ heißen auch „ganzrationale Funktionen“ oder „Parabeln höherer Ordnung“. Während man unter „Parabel“ normalerweise eine quadratische Parabel versteht (y=ax²+bx+c) versteht man unter einer „Parabel dritten Grades“ bzw. „Parabel dritter Ordnung“ eine Funktion mit x hoch 3 (y=ax³+bx²+cx+d). Mit „Parabel vierter Ordnung“ ist eine Funktion gemeint, in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008585" }

  • Polynome, Parabeln höherer Ordnung, ganzrationale Funktionen, Beispiel 2 | A.06.01

    „Polynome“ heißen auch „ganzrationale Funktionen“ oder „Parabeln höherer Ordnung“. Während man unter „Parabel“ normalerweise eine quadratische Parabel versteht (y=ax²+bx+c) versteht man unter einer „Parabel dritten Grades“ bzw. „Parabel dritter Ordnung“ eine Funktion mit x hoch 3 (y=ax³+bx²+cx+d). Mit „Parabel vierter Ordnung“ ist eine Funktion gemeint, in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008586" }

  • Geraden mit Parameter, Beispiel 4 | A.02.17

    Wenn in einer Geradengleichung ein Parameter auftaucht (also zusätzlich zum „x“ noch ein „t“ oder „k“ oder ), so spricht man von einer „Geradenschar“ (man hat schließlich eine ganze Schar von Geraden). Jede einzelne Gerade nennt man „Schargerade“ (eine Gerade aus dieser Schar). Die üblichen Fragen bei Geradenscharen sind Nullstellen (also y=0 setzen und nach „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008430" }

Seite:
Zur ersten Seite Eine Seite zurück 7 8 9 10 11 12 13 14 15 16 17 18 Eine Seite vor Zur letzten Seite