Ergebnis der Suche (6)

Ergebnis der Suche nach: ( (Freitext: ANALYSIS) und (Schlagwörter: MATHEMATIK) ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 172 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
51 bis 60
  • Partielle Ableitung, Beispiel 3 | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009655" }

  • Partielle Ableitung, Beispiel 7 | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009659" }

  • Partielle Ableitung, Beispiel 4 | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009656" }

  • Partielle Ableitung, Beispiel 5 | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009657" }

  • Partielle Ableitung, Beispiel 6 | A.51.01

    Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der „Ableitung“ sprechen, denn man muss schließlich präzisieren, ob man nach „x“, nach „y“ oder was auch immer ableitet. Also spricht man von der „partiellen Ableitung nach x“, oder der „partiellen Ableitung nach y“, usw. Betrachtet man z.B. die Ableitung nach x (oder ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009658" }

  • Mit L'Hospital Grenzwerte bestimmen | A.52.02

    L'Hospital wendet man an, wenn man für eine Grenzwertberechnung einen Bruch erhält in welchem sowohl Zähler als auch Nenner beide gegen Unendlich oder beide gegen Null gehen. Vorgehensweise: Man leitet Zähler und Nenner jeweils getrennt ab und betrachtet den neuen Bruch (ggf. nochmals die L'Hospitalsche Regel anwenden).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009678" }

  • Finanzmathematik: kurze Einführung | A.55

    Die Finanzmathematik befasst sich natürlich mit der Berechnung von verschiedenen finanzmathematischen Problemen. In diesem Kapitel betrachten wir: 1.Zinseszins-Berechnungen, 2.Rentenrechnung (Ratensparen), 3.Annuitäten-Rechnung (Tilgungsrechnung), 4.Bar- und Endwerte (mit Begriffen wie vor- und nachschüssig)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009767" }

  • Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 2 | A.51.03

    Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009668" }

  • Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 3 | A.53.05

    Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die „spezielle Lösung“ oder „partikuläre Lösung“ zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009719" }

  • DGL höherer Ordnung über charakteristisches Polynom lösen, Beispiel 3 | A.53.04

    Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009714" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite