Ergebnis der Suche (3)

Ergebnis der Suche nach: (Freitext: ÄNDERUNG) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 67 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 3 | A.30.04

    Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl „k“ heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009319" }

  • Exponentielles Wachstum berechnen mit Differentialgleichung, Beispiel 6 | A.30.04

    Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl „k“ heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009322" }

  • Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 4 | A.11.02

    Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008631" }

  • Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 2 | A.11.02

    Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008629" }

  • Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 1 | A.11.02

    Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008628" }

  • Transferaufgaben / praxisbezogene Anwendungsaufgaben für mathematische Probleme | A.31

    Transferaufgaben, Anwendungsaufgaben, anwendungsorientierte Aufgaben, Viele Namen für verschiedene Typen von Matheaufgaben, die praxisbezogen sind. Natürlich gibt es schier unendlich viele Typen von Aufgaben, die mathematische Probleme aus dem Alltag beschreiben. An dieser Stelle picken wir uns drei Typen davon aus: 1.Bestandsänderungen (Hauptidee: die Ableitung ist die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009343" }

  • Direkte Demokratie: Volksentscheide auf Bundesebene

    Das deutsche Grundgesetz sieht bisher nur in Ausnahmefällen die Möglichkeit eines Referendums vor. Das politische System der Bundesrepublik Deutschland ist ein stark repräsentativ ausgerichtetes System. Die Volksgesetzgebung in dem Sinne hat deshalb bisher noch keinen Einzug in die Verfassung genommen, auch wenn eine Änderung diesbezüglich immer wieder kontrovers ...

    Details  
    { "LO": "DE:LO:de.lehrer-online.wm_000490" }

  • Exponentielles Wachstum berechnen mit Differentialgleichung | A.30.04

    Die Differenzialgleichung vom exponentiellen Wachstum lautet: f'(t)=k*f(t) und sagt damit aus, dass die Änderung immer proportional zum Bestand ist (falls k=0,05, bedeutet das, dass die Zunahme immer 5% vom Bestand ist). Die Zahl „k“ heißt Proportionalitätsfaktor oder Wachstumskonstante und taucht auch in der Funktionsgleichung vom exponentiellen Wachstum ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009316" }

  • Funktionsmodell des Herzens

    Das Verständnis der Herzfunktion ist für Schülerinnen und Schüler in Klasse 7/8 herausfordernd. Sie müssen dazu ein dynamisches mentales Konzept entwickeln, indem die Änderung der Druckverhältnisse und die Rolle der Segel- und Taschenklappen in den einzelnen Phasen logisch repräsentiert sind. Dieses Ver­ständnis kann durch den Einsatz eines Funktionsmodells ...

    Details  
    { "DBS": "DE:DBS:63605" }

  • Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m | A.11.02

    Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008627" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite