Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: WAHRSCHEINLICHKEIT)

Es wurden 323 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Totale Wahrscheinlichkeit, Beispiel 1 | W.14.06

    Eine totale Wahrscheinlichkeit ist eine Wahrscheinlichkeit, die sich aus mehreren Fällen zusammensetzt. Z.B. wenn man die W.S. berechnen will, dass eine Person Schmuck trägt, setzt sich das aus der W.S. zusammen, dass eine Frau schmuck trägt, plus der W.S., dass ein Mann Schmuck trägt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010745" }

  • Vierfeldertafel, Beispiel 1 | Wahrscheinlichkeitsrechnung Formeln W.15.04

    Man kann die bedingte Wahrscheinlichkeit (auch „konditionale Wahrscheinlichkeit“) natürlich auch über eine Vierfeldertafel berechnen. Natürlich ist nichts anders, als bei der „normalen“ bedingten Wahrscheinlichkeit, außer dass man halt eine Vierfeldertafel hat.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010764" }

  • Totale Wahrscheinlichkeit, Beispiel 2 | W.14.06

    Eine totale Wahrscheinlichkeit ist eine Wahrscheinlichkeit, die sich aus mehreren Fällen zusammensetzt. Z.B. wenn man die W.S. berechnen will, dass eine Person Schmuck trägt, setzt sich das aus der W.S. zusammen, dass eine Frau schmuck trägt, plus der W.S., dass ein Mann Schmuck trägt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010746" }

  • Totale Wahrscheinlichkeit | W.14.06

    Eine totale Wahrscheinlichkeit ist eine Wahrscheinlichkeit, die sich aus mehreren Fällen zusammensetzt. Z.B. wenn man die W.S. berechnen will, dass eine Person Schmuck trägt, setzt sich das aus der W.S. zusammen, dass eine Frau schmuck trägt, plus der W.S., dass ein Mann Schmuck trägt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010744" }

  • Vierfeldertafel | Wahrscheinlichkeitsrechnung Formeln W.15.04

    Man kann die bedingte Wahrscheinlichkeit (auch „konditionale Wahrscheinlichkeit“) natürlich auch über eine Vierfeldertafel berechnen. Natürlich ist nichts anders, als bei der „normalen“ bedingten Wahrscheinlichkeit, außer dass man halt eine Vierfeldertafel hat.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010763" }

  • Vierfeldertafel, Beispiel 2 | Wahrscheinlichkeitsrechnung Formeln W.15.04

    Man kann die bedingte Wahrscheinlichkeit (auch „konditionale Wahrscheinlichkeit“) natürlich auch über eine Vierfeldertafel berechnen. Natürlich ist nichts anders, als bei der „normalen“ bedingten Wahrscheinlichkeit, außer dass man halt eine Vierfeldertafel hat.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010765" }

  • Totale Wahrscheinlichkeit, Beispiel 3 | W.14.06

    Eine totale Wahrscheinlichkeit ist eine Wahrscheinlichkeit, die sich aus mehreren Fällen zusammensetzt. Z.B. wenn man die W.S. berechnen will, dass eine Person Schmuck trägt, setzt sich das aus der W.S. zusammen, dass eine Frau schmuck trägt, plus der W.S., dass ein Mann Schmuck trägt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010747" }

  • Bedingte Wahrscheinlichkeit, Beispiel 2 | Wahrscheinlichkeitsrechnung Formeln W.15.03

    Eine bedingte Wahrscheinlichkeit (auch „konditionale Wahrscheinlichkeit“) hat man, wenn man eine Information gegeben hat. Z.B. Man sucht die Wahrscheinlichkeit, dass mit zwei Würfeln ein Pasch geworfen wird. Nutzt es etwas, wenn man weiß, dass die Summe beider Augenzahlen gerade ist? (Die Bedingung=Information wäre in diesem Fall, dass die Augensumme eine gerade Zahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010761" }

  • Bedingte Wahrscheinlichkeit | Wahrscheinlichkeitsrechnung Formeln W.15.03

    Eine bedingte Wahrscheinlichkeit (auch „konditionale Wahrscheinlichkeit“) hat man, wenn man eine Information gegeben hat. Z.B. Man sucht die Wahrscheinlichkeit, dass mit zwei Würfeln ein Pasch geworfen wird. Nutzt es etwas, wenn man weiß, dass die Summe beider Augenzahlen gerade ist? (Die Bedingung=Information wäre in diesem Fall, dass die Augensumme eine gerade Zahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010759" }

  • Bedingte Wahrscheinlichkeit, Beispiel 1 | Wahrscheinlichkeitsrechnung Formeln W.15.03

    Eine bedingte Wahrscheinlichkeit (auch „konditionale Wahrscheinlichkeit“) hat man, wenn man eine Information gegeben hat. Z.B. Man sucht die Wahrscheinlichkeit, dass mit zwei Würfeln ein Pasch geworfen wird. Nutzt es etwas, wenn man weiß, dass die Summe beider Augenzahlen gerade ist? (Die Bedingung=Information wäre in diesem Fall, dass die Augensumme eine gerade Zahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010760" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite