Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: MITTELSENKRECHTE)

Es wurden 11 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Mathematik-digital/Die Mittelsenkrechte

    Eine Gerade heißt Mittelsenkrechte auf eine Strecke [AB], wenn sie durch den Mittelpunkt der Strecke verläuft (die Strecke halbiert) und auf ihr senkrecht steht. Sie wird mit m[AB] oder mAB bezeichnet. Die Mittelsenkrechte auf eine Strecke ist eine Symmetrieachse dieser Strecke.

    Details  
    { "ZUM": "DE:DBS:55006" }

  • Mittelsenkrechte berechnen, Beispiel 1 | A.02.14

    Wie berechnet man die Gleichung einer Mittelsenkrechten? Eine Mittelsenkrechte steht senkrecht auf einer Dreiecksseite und geht durch die Mitte dieser Seite. Dadurch, dass die Mittelsenkrechte orthogonal auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert). Den Mittelpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008412" }

  • Mittelsenkrechte berechnen, Beispiel 2 | A.02.14

    Wie berechnet man die Gleichung einer Mittelsenkrechten? Eine Mittelsenkrechte steht senkrecht auf einer Dreiecksseite und geht durch die Mitte dieser Seite. Dadurch, dass die Mittelsenkrechte orthogonal auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert). Den Mittelpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008413" }

  • Mittelsenkrechte berechnen, Beispiel 3 | A.02.14

    Wie berechnet man die Gleichung einer Mittelsenkrechten? Eine Mittelsenkrechte steht senkrecht auf einer Dreiecksseite und geht durch die Mitte dieser Seite. Dadurch, dass die Mittelsenkrechte orthogonal auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert). Den Mittelpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008414" }

  • Mittelsenkrechte (Mathematik)

    Die Mittelsenkrechte zu zwei gegebenen Punkten A und B stellt die Menge aller Punkte dar, die von A und B jeweils gleichen Abstand haben. Damit ist der Schnittpunkt der Mittelsenkrechte mit der Strecke [AB] der Mittelpunkt der beiden Punkte.

    Details  
    { "Serlo": "DE:DBS:56113" }

  • Mittelsenkrechte berechnen | A.02.14

    Wie berechnet man die Gleichung einer Mittelsenkrechten? Eine Mittelsenkrechte steht senkrecht auf einer Dreiecksseite und geht durch die Mitte dieser Seite. Dadurch, dass die Mittelsenkrechte orthogonal auf der Dreiecksseite steht, kann man ihre Steigung berechnen (man berechnet zuerst die Steigung der Dreiecksseite, davon nimmt man den negativen Kehrwert). Den Mittelpunkt ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008411" }

  • Mathematik-digital/Winkelhalbierende, Mittelsenkrechte, Lot

    Die Unterrichtssequenz besteht aus drei Lernpfaden zu den Themen Winkelhalbierende, Mittelsenkrechte und Lot. Notwendige Schülermaterialien werden am Anfang des jeweiligen Lernpfades angegeben bzw. zum Download zur Verfügung gestellt.

    Details  
    { "ZUM": "DE:DBS:55007" }

  • GRIPS Mathe - Grundlagen der Konstruktion - GRIPS Mathe Lektion 28

    Die Grundlagen der Konstruktion erläutert Mathelehrer Basti Wohlrab an einem ungewöhnlichen Ort: Im Wald. Für eine Schatzsuche müssen die beiden Schüler eine Mittelsenkrechte zwischen zwei Bäumen konstruieren und später den Mittelpunkt zwischen 3 Bäumen bestimmen.Die Lektion besteht aus 1 Film, 2 Mediaboxen und 4 Texten.

    Details  
    { "Select.HE": "DE:Select.HE:1643139" }

  • Geometrische Ortslinien und Ortsbereiche auf dem Tablet - sketchometry im Unterricht

    sketchometry, die dynamische Computersoftware für den Mathematikunterricht kann auf elektronischen Tafeln, Tablets oder Smartphones angewendet werden. Durch Skizzieren mit dem Finger entstehen geometrische Objekte und Konstruktionen, die sich mit einem oder zwei Fingern verändern, verschieben und drehen lassen. Schülerinnen und Schüler lassen sich unmittelbar zu ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00013959" }

  • Dynamische Geometrie Webtool Sketchometry

    Mathematik-Didaktiker an der Universität Bayreuth haben eine neuartige Software für den Geometrieunterricht an Schulen entwickelt. Auf Tablet-Computern, die direkt über Fingerbewegungen auf einem Touchscreen gesteuert werden, können Schülerinnen und Schüler in kürzester Zeit präzise geometrische Konstruktionen entwickeln und auf virtuellen Speicherplätzen im Internet ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00001067" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite