Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: HYPERBEL)

Es wurden 24 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Hyperbel / Hyperbeln berechnen, Beispiel 6 A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008595" }

  • Hyperbel / Hyperbeln berechnen, Beispiel 3 | A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008592" }

  • Hyperbel / Hyperbeln berechnen, Beispiel 5 | A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008594" }

  • Hyperbel / Hyperbeln berechnen, Beispiel 1 | A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008590" }

  • Hyperbel / Hyperbeln berechnen, Beispiel 4 | A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008593" }

  • Hyperbel / Hyperbeln berechnen, Beispiel 2 | A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008591" }

  • Hyperbel / Hyperbeln berechnen | A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008589" }

  • Parabel, Hyperbel, Exponentialfunktion: wie man mit verschiedenen Funktionstypen rechnet | A.06

    Von manchen Funktionstypen werden schon recht „früh“ diverse Gesichtspunkte betrachtet. Von Parabeln (ganzrationale Funktionen), Hyperbeln und Exponentialfunktionen sind an dieser Stelle hauptsächlich Grenzwertbetrachtungen relevant (Limes) und das ungefähre Aussehen dieser Funktionen im Koordinatensystem. Dazu noch ein paar andere Kleinigkeiten.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008583" }

  • Schaubilder von Funktionen: gebrochen-rationale Funktion | A.27.01

    Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009203" }

  • Schaubilder von Funktionen: Sinus-Funktion / Kosinus-Funktion | A.27.01

    Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009202" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite