Ergebnis der Suche

Ergebnis der Suche nach: ( ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Systematikpfad: MECHANIK) ) und (Schlagwörter: "MECHANISCHE SCHWINGUNGEN")

Es wurden 19 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Federpendel stark gedämpft - Kriechfall Theorie

    Elongation des Körpers Aufgabe Weise nach, dass im Kriechfall die Funktion x t = hat x cdot frac 1 2 cdot lambda left left lambda + delta

    Details  
    { "LEIFI": "DE:LEIFI:15491" }

  • Periodische Bewegungen und Schwingungen

    Schwingungen: besondere periodische Bewegungen Joachim Herz Stiftung Abb. 2 Ruhelage von verschiedenen Anordnungen, die eine Schwingung durchführen könnenDie erste periodische Bewegung in Abb. 1 unterscheidet sich von den anderen fünf in einem

    Details  
    { "LEIFI": "DE:LEIFI:7551" }

  • Hemmungspendel Galilei-Pendel

    Schwingungshöhe auf der gehemmten Seite Das Hindernis, welches in die Schwingung gebracht wird, wandelt keine Energie um. Somit gilt auch beim gehemmten Pendel die Energieerhaltung und es wird lediglich Energie potentieller Energie in kinetische Energie und wieder in potentielle Energie

    Details  
    { "LEIFI": "DE:LEIFI:9483" }

  • Skater in der Halfpipe

    Hinweise •Häufig wird fälschlicherweise behauptet, dass die beschleunigende Kraft beim Skater in der Halfpipe die vektorielle Summe aus Gewichtskraft und Bodenkraft sei. Hierbei wird übersehen, dass der Boden nicht nur die Komponete der Gewichtskraft orthogonal zur Bahn aufbringen

    Details  
    { "LEIFI": "DE:LEIFI:8715" }

  • Schwingende Boje

    Bewegung einer schwingenden Boje Bei geeignet gewähltem Koordinatensystem vgl. Animation in Abb. 1 und den Anfangsbedingungen y 0 = y_0 und v 0 = dot y 0 = 0 wird die Bewegung einer schwingenden Boje mit der Dichte rho_ rm B und der Länge

    Details  
    { "LEIFI": "DE:LEIFI:8978" }

  • Doppeltes Federpendel

    Bewegung des doppelten Federpendels Bei geeignet gewähltem Koordinatensystem vgl. Animation in Abb. 1 und den Anfangsbedingungen x 0 = x_0 und v 0 = dot x 0 = 0 wird die Bewegung eines doppelten Federpendels mit einem Pendelkörper der Masse m und

    Details  
    { "LEIFI": "DE:LEIFI:9225" }

  • Federpendel Simulation mit Versuchsanleitung

    Ergebnis Wenn ein Federpendel mit einem Pendelkörper der Masse m und einer Feder mit der Federkonstante D schwingt, dann ist die Schwingungsdauer T unabhängig von der Anfangsauslenkung x_0 proportional zur Wurzel der

    Details  
    { "LEIFI": "DE:LEIFI:13035" }

  • Blattfederpendel stehend

    Hinweise •Häufig wird fälschlicherweise behauptet, dass die beschleunigende Kraft beim Blattfederpendel die vektorielle Summe aus Gewichtskraft und Kraft der Blattfeder sei. Hierbei wird übersehen, dass die Blattfeder nicht nur die Komponete der Gewichtskraft orthogonal zur Bahn

    Details  
    { "LEIFI": "DE:LEIFI:8975" }

  • Feder-Schwere-Pendel Simulation mit Versuchsanleitung

    Ergebnis Ein Feder-Schwere-Pendel mit einem Pendelkörper der Masse m und einer Feder mit der Federkonstante D schwingt an einem Ort mit dem Ortsfaktor g . Dann ist die Schwingungsdauer T unabhängig von der

    Details  
    { "LEIFI": "DE:LEIFI:13130" }

  • Flüssigkeitspendel

    Bewegung des Flüssigkeitspendels Bei geeignet gewähltem Koordinatensystem vgl. Animation in Abb. 1 und den Anfangsbedingungen y 0 = y_0 und dot y 0 = 0 wird die Bewegung eines Flüssigkeitspendels mit einer Flüssigkeitssäule der Länge L

    Details  
    { "LEIFI": "DE:LEIFI:8713" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 Eine Seite vor Zur letzten Seite