Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: VIETA) und (Schlagwörter: LINEARFAKTOR)

Es wurden 6 Einträge gefunden


Treffer:
1 bis 6
  • Linearfaktorzerlegung: kurze Einführung | B.05

    Eine Linearfaktorzerlegung bedeutet, dass man eine Funktion so umschreibt, dass sie nur noch aus Klammern besteht, welche mit „Mal“ verbunden sind. Innerhalb der Klammern darf das „x“ keine Hochzahl haben. Z.B. schreibt man x²+6x+5 als Linearfaktorzerlegung um in: (x+5)(x+1). Die einfache Linearfaktorzerlegung geht über Ausklammern oder binomische Formeln, wenn´s etwas ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009878" }

  • Linearfaktorzerlegung: so einfach geht's | B.05.01

    Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein „x“ ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009879" }

  • Linearfaktorzerlegung: so einfach geht's, Beispiel 3 | B.05.01

    Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein „x“ ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009882" }

  • Linearfaktorzerlegung: so einfach geht's, Beispiel 2 | B.05.01

    Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein „x“ ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009881" }

  • Linearfaktorzerlegung: so einfach geht's, Beispiel 4 | B.05.01

    Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein „x“ ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009883" }

  • Linearfaktorzerlegung: so einfach geht's, Beispiel 1 | B.05.01

    Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein „x“ ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009880" }

Vorschläge für alternative Suchbegriffe:

[ Mathematik [ Algebra [ quadratische Funktionen [ Textaufgabe [ Satz [ Sachrechnen [ Quadratische Gleichung [ Mathematischer Lehrsatz [ Mathematikunterricht [ Lehrsatz [ Gleichungslehre [ Angewandte Mathematik