Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: VARIABLE) und (Bildungsebene: "SEKUNDARSTUFE II") ) und (Schlagwörter: PARAMETER)

Es wurden 22 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Lineare Gleichungen mit Parameter lösen, Beispiel 2 | G.03.02

    Steckt in einer linearen Gleichung nicht nur eine Variable (meist „x“), sondern auch ein Parameter („t“ oder „k“ oder ), so sieht das zwar etwas hässlich aus, aber das Prinzip ist genau gleich wie bei den Gleichungen ohne Parameter. Falls Klammern auftauchen, löst man diese auf. Danach bringt man alles mit „x“ auf eine Seite der Gleichung, alles was kein „x“ hat, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010067" }

  • Lineare Gleichungen mit Parameter lösen | G.03.02

    Steckt in einer linearen Gleichung nicht nur eine Variable (meist „x“), sondern auch ein Parameter („t“ oder „k“ oder ), so sieht das zwar etwas hässlich aus, aber das Prinzip ist genau gleich wie bei den Gleichungen ohne Parameter. Falls Klammern auftauchen, löst man diese auf. Danach bringt man alles mit „x“ auf eine Seite der Gleichung, alles was kein „x“ hat, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010065" }

  • Lineare Gleichungen mit Parameter lösen, Beispiel 3 | G.03.02

    Steckt in einer linearen Gleichung nicht nur eine Variable (meist „x“), sondern auch ein Parameter („t“ oder „k“ oder ), so sieht das zwar etwas hässlich aus, aber das Prinzip ist genau gleich wie bei den Gleichungen ohne Parameter. Falls Klammern auftauchen, löst man diese auf. Danach bringt man alles mit „x“ auf eine Seite der Gleichung, alles was kein „x“ hat, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010068" }

  • Lineare Gleichungen mit Parameter lösen, Beispiel 1 | G.03.02

    Steckt in einer linearen Gleichung nicht nur eine Variable (meist „x“), sondern auch ein Parameter („t“ oder „k“ oder ), so sieht das zwar etwas hässlich aus, aber das Prinzip ist genau gleich wie bei den Gleichungen ohne Parameter. Falls Klammern auftauchen, löst man diese auf. Danach bringt man alles mit „x“ auf eine Seite der Gleichung, alles was kein „x“ hat, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010066" }

  • Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 4 | A.24.01

    Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibt’s eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009137" }

  • Lineare, inhomogene Differentialgleichung DGL lösen | A.53.03

    Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009707" }

  • Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 2 | A.53.03

    Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009709" }

  • Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 1 | A.53.03

    Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009708" }

  • Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 3 | A.53.03

    Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009710" }

  • Lineare, homogene Differentialgleichung mit Trennung der Variablen lösen, Beispiel 1 | A.53.02

    Betrachten wir den Fall, dass NUR die DGL gegeben ist (also KEINE Funktion). Den einfachsten Fall einer DGL hat man, wenn die DGL homogen und linear ist (also die Form hat: a·y'+b·y=0, wobei a und b durchaus von x abhängen können). Nun schreibt man y' um zu: „dy/dx“, multipliziert die gesamte Gleichung mit „dx“ und versucht nun auch im Folgenden, alle „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009703" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite