Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: TANGENS-FUNKTION) und (Schlagwörter: VIDEO) ) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 94 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Verkettete Funktionen berechnen | A.52.03

    Eine Verkettung (oder Verknüpfung) von Funktionen ist eine hintereinander Ausführung von zwei Funktionen. f(g(x)) bedeutet, dass man einen x-Wert hat, diesen setzt man in die Funktion g(x) ein, das Ergebnis setzt man in die Funktion f(x) ein. Es gibt noch andere Schreibweisen. Ausgesprochen wird das Ganze als „f nach g von x“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009686" }

  • Verkettete Funktionen berechnen, Beispiel 3 | A.52.03

    Eine Verkettung (oder Verknüpfung) von Funktionen ist eine hintereinander Ausführung von zwei Funktionen. f(g(x)) bedeutet, dass man einen x-Wert hat, diesen setzt man in die Funktion g(x) ein, das Ergebnis setzt man in die Funktion f(x) ein. Es gibt noch andere Schreibweisen. Ausgesprochen wird das Ganze als „f nach g von x“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009689" }

  • Mathe-Seite.de: Themenübersicht Oberstufe

    Diese Liste zeigt alle Themen der gymnasialen Oberstufe. Zu jedem Unterkapitel - zum Beispiel: [A.12.04] Mitternachtsformel – gibt es Videos mit Beispielaufgaben, die Schritt für Schritt durchgerechnet und sehr verständlich erklärt werden.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00016341" }

  • Verkettete Funktionen berechnen, Beispiel 1 | A.52.03

    Eine Verkettung (oder Verknüpfung) von Funktionen ist eine hintereinander Ausführung von zwei Funktionen. f(g(x)) bedeutet, dass man einen x-Wert hat, diesen setzt man in die Funktion g(x) ein, das Ergebnis setzt man in die Funktion f(x) ein. Es gibt noch andere Schreibweisen. Ausgesprochen wird das Ganze als „f nach g von x“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009687" }

  • Ableitung von komplizierten gebrochen-rationalen Funktionen / Bruchfunktion | A.43.03

    Für besonders hässliche Ableitung braucht man die Quotientenregel und zusätzlich noch Ketten- und/oder Produktregel. Na ja.. hässlich eben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009509" }

  • Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen, Beispiel 1 | A.43.06

    Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009517" }

  • Ableitung von komplizierten gebrochen-rationalen Funktionen, Beispiel 2 | A.43.03

    Für besonders hässliche Ableitung braucht man die Quotientenregel und zusätzlich noch Ketten- und/oder Produktregel. Na ja.. hässlich eben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009511" }

  • Ableitung von komplizierten gebrochen-rationalen Funktionen, Beispiel 1 | A.43.03

    Für besonders hässliche Ableitung braucht man die Quotientenregel und zusätzlich noch Ketten- und/oder Produktregel. Na ja.. hässlich eben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009510" }

  • Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 3

    Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009693" }

  • Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 5

    Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009695" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 Eine Seite vor Zur letzten Seite