Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: KOMPLEXE und ZAHL) und (Schlagwörter: ZAHL)

Es wurden 47 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Komplexe Zahlen

    Die Gleichung x^2+1=0 hat keine Lösung x. Sie lösen zu wollen führt auf die einfachste Situation in der komplexe Zahlen benötigt werden.

    Details  
    { "Serlo": "DE:DBS:56137" }

  • Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen, Beispiel 1 | A.54.07

    In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009760" }

  • Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen, Beispiel 3 | A.54.07

    In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009762" }

  • Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen, Beispiel 4 | A.54.07

    In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009763" }

  • Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen, Beispiel 2 | A.54.07

    In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009761" }

  • Komplexer Logarithmus und sonstige Probleme zu komplexen Zahlen | A.54.07

    In Verbindung mit komplexen Zahlen tauchen öfter Aufgaben und Problemchen auf, für die keine besondere Theorie notwendig ist. Z.B. ist das der komplexe Logarithmus oder Produkte aus komplexen Zahlen und e-Termen. Was auch immer Sie begegnen: versuchen Sie alles in kartesische Form umzuwandeln oder noch besser: alles in Polarform.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009759" }

  • Komplexe Zahlen potenzieren, Beispiel 2 | A.54.05

    Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist „n“. Der Betrag der neuen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009751" }

  • Komplexe Zahlen potenzieren, Beispiel 3 | A.54.05

    Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist „n“. Der Betrag der neuen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009752" }

  • Komplexe Zahlen potenzieren, Beispiel 1 | A.54.05

    Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist „n“. Der Betrag der neuen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009750" }

  • Komplexe Zahlen potenzieren | A.54.05

    Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. (r*e^(ax))^n = (r^n)*e^(anx). Grafisch geht Potenzieren so: Annahme die neue Hochzahl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009749" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite