Ergebnis der Suche

Ergebnis der Suche nach: ( (Freitext: DURCHSCHNITT) und (Quelle: "learn:line NRW") ) und (Bildungsebene: "SEKUNDARSTUFE II")

Es wurden 25 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Mittel, Durchschnitt und Lageparameter

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier werden die Begriffe Mittel, Durchschnitt und Lageparameter in der Stochastik erklärt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004579" }

  • Erwartungswert berechnen, Beispiel 2 | Wahrscheinlichkeitsrechnung Formeln W.15.06

    Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010776" }

  • Erwartungswert berechnen, Beispiel 1 | Wahrscheinlichkeitsrechnung Formeln W.15.06

    Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010775" }

  • Erwartungswert berechnen, Beispiel 3 | Wahrscheinlichkeitsrechnung Formeln W.15.06

    Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010777" }

  • Erwartungswert | Wahrscheinlichkeitsrechnung Formeln W.15.06

    Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010774" }

  • Median, Modus, Mittelwert und wie man richtig damit rechnet; Beispiel 2 | W.11.03

    Was ein Mittelwert ( = Durchschnitt = Erwartungswert ) ist, weiß wohl jeder. Man zählt alles zusammen und teilt das Ergebnis durch die Anzahl. (Der Erwartungswert ist in der Wahrscheinlichkeitsrechnung eine Vorhersage für einen unbekannten Durchschnittswert). Ein Modus (oder Modalwert) ist derjenige Wert, der am häufigsten auftaucht. Der Median ist der Wert, der in der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010687" }

  • Median, Modus, Mittelwert und wie man richtig damit rechnet | W.11.03

    Was ein Mittelwert ( = Durchschnitt = Erwartungswert ) ist, weiß wohl jeder. Man zählt alles zusammen und teilt das Ergebnis durch die Anzahl. (Der Erwartungswert ist in der Wahrscheinlichkeitsrechnung eine Vorhersage für einen unbekannten Durchschnittswert). Ein Modus (oder Modalwert) ist derjenige Wert, der am häufigsten auftaucht. Der Median ist der Wert, der in der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010685" }

  • Median, Modus, Mittelwert und wie man richtig damit rechnet; Beispiel 1 | W.11.03

    Was ein Mittelwert ( = Durchschnitt = Erwartungswert ) ist, weiß wohl jeder. Man zählt alles zusammen und teilt das Ergebnis durch die Anzahl. (Der Erwartungswert ist in der Wahrscheinlichkeitsrechnung eine Vorhersage für einen unbekannten Durchschnittswert). Ein Modus (oder Modalwert) ist derjenige Wert, der am häufigsten auftaucht. Der Median ist der Wert, der in der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010686" }

  • Gesetz der großen Zahlen

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier wird das Gesetz der großen Zahlen erklärt und an einem Beispiel gezeigt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004565" }

  • Standardabweichung

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Die Standardabweichung ist ein Maß dafür, wie weit die einzelnen Zahlen verteilt sind. Hier erfahren Sie ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004589" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite