Ergebnis der Suche

Ergebnis der Suche nach: (Freitext: "GANZRATIONALE FUNKTION") und (Schlagwörter: KOORDINATE)

Es wurden 45 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Schaubilder von Funktionen: ganzrationale Funktion | A.27.01

    Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009200" }

  • Funktionen Schaubildern zuordnen, Beispiel 1 | A.27.02

    Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009209" }

  • Polynome über Nullstellen aufstellen, Beispiel 2 | A.46.04

    Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter „a“ erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009634" }

  • Ganzrationale Funktionen: kurze Einführung | A.46

    Den Hauptteil von ganzrationalen Funktionen (=Parabeln) haben wir ersten Themenbereich behandelt „Analysis 1“. In diesem Hauptkapitel behandeln wir nur ein paar Besonderheiten davon. Wir stellen Polynome über diverse Bedingungen auf, zerlegen sie in Linearfaktoren, bestimmen Nullstellen über Polynomdivision oder Horner-Schema.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009618" }

  • Gebrochen-rationale Funktionen / Bruchfunktion: Nullstellen berechnen | A.43.01

    Die Schnittpunkte einer Bruchfunktion mit der x-Achse bestimmt man, in dem man die Funktion mit dem Nenner multipliziert. Damit ist man den Bruch los und führt die Berechnung der Nullstellen auf die eine viel einfachere ganzrationale Funktion zurück.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009501" }

  • Gebrochen-rationale Funktionen / Bruchfunktion: Nullstellen berechnen, Beispiel 2 | A.43.01

    Die Schnittpunkte einer Bruchfunktion mit der x-Achse bestimmt man, in dem man die Funktion mit dem Nenner multipliziert. Damit ist man den Bruch los und führt die Berechnung der Nullstellen auf die eine viel einfachere ganzrationale Funktion zurück.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009503" }

  • Gebrochen-rationale Funktionen / Bruchfunktion: Nullstellen berechnen, Beispiel 3 | A.43.01

    Die Schnittpunkte einer Bruchfunktion mit der x-Achse bestimmt man, in dem man die Funktion mit dem Nenner multipliziert. Damit ist man den Bruch los und führt die Berechnung der Nullstellen auf die eine viel einfachere ganzrationale Funktion zurück.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009504" }

  • Polynome über Nullstellen aufstellen, Beispiel 3 | A.46.04

    Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter „a“ erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009635" }

  • Gebrochen-rationale Funktionen / Bruchfunktion: Nullstellen berechnen, Beispiel 1 | A.43.01

    Die Schnittpunkte einer Bruchfunktion mit der x-Achse bestimmt man, in dem man die Funktion mit dem Nenner multipliziert. Damit ist man den Bruch los und führt die Berechnung der Nullstellen auf die eine viel einfachere ganzrationale Funktion zurück.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009502" }

  • Polynome über Nullstellen aufstellen | A.46.04

    Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter „a“ erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009632" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 Eine Seite vor Zur letzten Seite