Schnittpunkt zweier Geraden - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Schnittpunkt zweier Geraden - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Schnittpunkt zweier Geraden berechnen, Beispiel 2 | V.02.01
Zwei Geraden können auf vier Lagen zu einander liegen: wenn die Richtungsvektoren beider Geraden Vielfache voneinander sind, sind die Geraden parallel oder identisch. Sind die Richtungsvektoren keine Vielfache voneinander, so liegen die Geraden windschief oder sie haben einen Schnittpunkt. Vorgehensweise: Man betrachtet die Richtungsvektoren beider Geraden und danach setzt ...
Schnittpunkt zweier Geraden berechnen, Beispiel 1 | V.02.01
Zwei Geraden können auf vier Lagen zu einander liegen: wenn die Richtungsvektoren beider Geraden Vielfache voneinander sind, sind die Geraden parallel oder identisch. Sind die Richtungsvektoren keine Vielfache voneinander, so liegen die Geraden windschief oder sie haben einen Schnittpunkt. Vorgehensweise: Man betrachtet die Richtungsvektoren beider Geraden und danach setzt ...
Schnittpunkt zweier Geraden berechnen, Beispiel 4 | V.02.01
Zwei Geraden können auf vier Lagen zu einander liegen: wenn die Richtungsvektoren beider Geraden Vielfache voneinander sind, sind die Geraden parallel oder identisch. Sind die Richtungsvektoren keine Vielfache voneinander, so liegen die Geraden windschief oder sie haben einen Schnittpunkt. Vorgehensweise: Man betrachtet die Richtungsvektoren beider Geraden und danach setzt ...
Schnittpunkt zweier Geraden berechnen, Beispiel 3 | V.02.01
Zwei Geraden können auf vier Lagen zu einander liegen: wenn die Richtungsvektoren beider Geraden Vielfache voneinander sind, sind die Geraden parallel oder identisch. Sind die Richtungsvektoren keine Vielfache voneinander, so liegen die Geraden windschief oder sie haben einen Schnittpunkt. Vorgehensweise: Man betrachtet die Richtungsvektoren beider Geraden und danach setzt ...
Schnittpunkt zweier Geraden berechnen | V.02.01
Zwei Geraden können auf vier Lagen zu einander liegen: wenn die Richtungsvektoren beider Geraden Vielfache voneinander sind, sind die Geraden parallel oder identisch. Sind die Richtungsvektoren keine Vielfache voneinander, so liegen die Geraden windschief oder sie haben einen Schnittpunkt. Vorgehensweise: Man betrachtet die Richtungsvektoren beider Geraden und danach setzt ...
Lernvideo: Schnittpunktberechnungen
In diesem YouTube-Lernvideo von A. Wendt wird ausführlich erklärt, wie man den Schnittpunkt zweier Geraden, einer Gerade und einer Parabel und schließlich den Schnittpunkt zweier Parabeln berechnet.
Schnittmenge berechnen, Schnittpunkt, Schnittgerade | V.02
Eine Schnittmenge zu berechnen, bedeutet Geraden und Ebenen auf Schnittpunkte und Schnittgeraden zu überprüfen. Dieses nennt man auch „gegenseitige Lage“ bestimmen. Wichtig sind gegenseitige Lage von zwei Geraden, gegenseitige Lage einer Gerade mit einer Ebene und die gegenseitige Lage zweier Ebenen. Die gesuchten Lösungen (bzw. den Lösungsvektor) berechnet man immer ...
Schnittpunkte zweier Parabeln berechnen, Beispiel 3 | A.04.12
Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt „x²“ weg, kann man einfach nach dem verbliebenen „x“ auflösen. Bleibt „x²“ übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...
Schnittpunkte zweier Parabeln berechnen | A.04.12
Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt „x²“ weg, kann man einfach nach dem verbliebenen „x“ auflösen. Bleibt „x²“ übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...
Schnittpunkte zweier Parabeln berechnen, Beispiel 2 | A.04.12
Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt „x²“ weg, kann man einfach nach dem verbliebenen „x“ auflösen. Bleibt „x²“ übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...