Pyramiden berechnen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Pyramiden berechnen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Pyramide: was ist eine Pyramide im mathematischen Sinne? | V.07
Sämtliche Theorien der Vektorgeometrie fließen in Aufgaben zu Pyramiden ein. Eine Aufgabe zu einer Pyramide ist also so eine Art Anwendungsaufgabe in der Vektorgeometrie.
Kreuzprodukt | V.05.03
Mit dem Kreuzprodukt (bzw. Vektorprodukt) kann man einige Rechnungen erheblich vereinfachen. Die Hauptanwendung ist wohl die, um eine Parameterform in eine Koordinatenform umzuwandeln (siehe auch V.05.01). Desweiteren verwendet man das Kreuzprodukt um Flächen von Dreiecken und Parallelogrammen leicht zu berechnen (unter Parallelogramm fällt auch: Rechteck, Raute, Quadrat) ...
GRIPS Mathe - Volumen Pyramide und Kegel - GRIPS Mathe Lektion 24
Mathelehrer Sebastian Wohlrab, Matthias und Stina wollen für ihre Party eine Bar bauen mit Pyramiden und Eckpfeilern und gehen dazu in eine Schreinerei. Dort lernen sie wie man das Volumen von Pyramiden und Kegeln berechnet. Im Umschüttversuch entdecken sie den konstanten 1/3-Zusammenhang von Spitzkörpern zu Quader und Zylinder und stellen die Volumen-Formeln zu Pyramide ...
Senkrechte quadratische Pyramide berechnen, Beispiel 1 | V.07.02
Eine senkrechte quadratische Pyramide ist eine Pyramide, deren Grundfläche ein Quadrat ist, und deren Spitze genau über dem Mittelpunkt des Quadrats liegt. Die meisten Berechnung sind von der Schwierigkeit her akzeptabel (vor allem wenn die Grundfläche in der x1-x2-Ebene liegt), daher sieht man diese Pyramiden am häufigsten.
Senkrechte quadratische Pyramide berechnen, Beispiel 4 | V.07.02
Eine senkrechte quadratische Pyramide ist eine Pyramide, deren Grundfläche ein Quadrat ist, und deren Spitze genau über dem Mittelpunkt des Quadrats liegt. Die meisten Berechnung sind von der Schwierigkeit her akzeptabel (vor allem wenn die Grundfläche in der x1-x2-Ebene liegt), daher sieht man diese Pyramiden am häufigsten.
Senkrechte quadratische Pyramide berechnen, Beispiel 3 | V.07.02
Eine senkrechte quadratische Pyramide ist eine Pyramide, deren Grundfläche ein Quadrat ist, und deren Spitze genau über dem Mittelpunkt des Quadrats liegt. Die meisten Berechnung sind von der Schwierigkeit her akzeptabel (vor allem wenn die Grundfläche in der x1-x2-Ebene liegt), daher sieht man diese Pyramiden am häufigsten.
Senkrechte quadratische Pyramide berechnen, Beispiel 2 | V.07.02
Eine senkrechte quadratische Pyramide ist eine Pyramide, deren Grundfläche ein Quadrat ist, und deren Spitze genau über dem Mittelpunkt des Quadrats liegt. Die meisten Berechnung sind von der Schwierigkeit her akzeptabel (vor allem wenn die Grundfläche in der x1-x2-Ebene liegt), daher sieht man diese Pyramiden am häufigsten.
Senkrechte quadratische Pyramide berechnen | V.07.02
Eine senkrechte quadratische Pyramide ist eine Pyramide, deren Grundfläche ein Quadrat ist, und deren Spitze genau über dem Mittelpunkt des Quadrats liegt. Die meisten Berechnung sind von der Schwierigkeit her akzeptabel (vor allem wenn die Grundfläche in der x1-x2-Ebene liegt), daher sieht man diese Pyramiden am häufigsten.
Kreuzprodukt, Beispiel 6 | V.05.03
Mit dem Kreuzprodukt (bzw. Vektorprodukt) kann man einige Rechnungen erheblich vereinfachen. Die Hauptanwendung ist wohl die, um eine Parameterform in eine Koordinatenform umzuwandeln (siehe auch V.05.01). Desweiteren verwendet man das Kreuzprodukt um Flächen von Dreiecken und Parallelogrammen leicht zu berechnen (unter Parallelogramm fällt auch: Rechteck, Raute, Quadrat) ...
Kreuzprodukt, Beispiel 2 | V.05.03
Mit dem Kreuzprodukt (bzw. Vektorprodukt) kann man einige Rechnungen erheblich vereinfachen. Die Hauptanwendung ist wohl die, um eine Parameterform in eine Koordinatenform umzuwandeln (siehe auch V.05.01). Desweiteren verwendet man das Kreuzprodukt um Flächen von Dreiecken und Parallelogrammen leicht zu berechnen (unter Parallelogramm fällt auch: Rechteck, Raute, Quadrat) ...