Negative Zahlen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Negative Zahlen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

GRIPS Mathe - Ganze Zahlen - GRIPS Mathe Lektion 02
Sinken die Temperatur unter null Grad, dann zeigt das Thermometer eine negative Zahl an. Basti Wohlrab und seine Schüler lernen auf der Wetterstation Hohenpeißenberg hautnah, dass Vorzeichen eine Zahl verändern. Das Team ordnet im Hof Dinge wie heißen Tee oder Eiswürfel auf einer großen Temperaturskala an und lernt dabei die Überschreitung des kritischen Nullpunkts. ...
Ungleichungen | A.26
Eine Ungleichung hat kein Gleich-Zeichen, sondern ein Ungleichheits-Zeichen, also ein „Kleiner-Zeichen“ oder ein „Größer-Zeichen“ (bzw. „kleiner gleich“ oder „größer gleich“). Man behandelt Ungleichungen genau wie Gleichungen, nur dass sich das Ungleichheitszeichen umdreht, wenn man mit einer negativen Zahl multipliziert oder durch eine negative Zahl ...
Ganze Zahlen (Mediabox)
Im ersten Teil geht es um positive und negative Zahlen. Wie man diese mithilfe einer Zahlengeraden vergleichen kann, wird hier erklärt.Die Mediabox umfasst 21 Stationen:Film: Wetterwarte Hohenpeißenberg, Übung 1: Hast du gut aufgepasst?, Film: Was sind die Bestandteile einer Zahl?, Film: Gegenstände einer Temperaturskala zuordnen, Übung 2: Gegenstände zuordnen, Film: ...
Ungleichungen höherer Potenz, Beispiel 3 | A.26.03
Eine „höhere Ungleichung“ oder besser eine „Ungleichung höherer Potenz“ ist eine Ungleichung, in welcher höhere Potenzen von „x“ auftauchen. Eigentlich gibt es nur eine gute Lösungsmöglichkeit:
Ungleichungen höherer Potenz, Beispiel 6 | A.26.03
Eine „höhere Ungleichung“ oder besser eine „Ungleichung höherer Potenz“ ist eine Ungleichung, in welcher höhere Potenzen von „x“ auftauchen. Eigentlich gibt es nur eine gute Lösungsmöglichkeit:
Quadratische Ungleichungen, Beispiel 2 | A.26.02
Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher „x²“ vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.
Quadratische Ungleichungen, Beispiel 5 | A.26.02
Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher „x²“ vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.
Quadratische Ungleichungen, Beispiel 4 | A.26.02
Eine quadratische Ungleichung ist natürlich eine Ungleichung, in welcher „x²“ vorkommt. Es gibt zwei gute Vorgehensweisen dafür. Entweder über die quadratische Ergänzung oder man bestimmt die Nullstellen der quadratischen Parabel, überlegt, wie die Parabel liegt und weiß damit, in welchem Bereich die Parabel positiv oder negativ ist.