Mehrdimensionale Funktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Mehrdimensionale Funktion: kurze Erklärung | A.51
Funktionen müssen natürlich nicht zwingend nur von einer Variablen abhängen (also nur von x). Eine Funktion kann auch mehrere x-Werte haben, sie heißen dann auch mehrdimensionale Funktionen. Diese x-Werte heißen dann entweder x, y, z, .. oder x1, x2, x3, Meist interessiert man sich nun für Extrempunkte, Tangenten (die nun aber keine Gerade sind, ...
Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 1 | A.51.02
Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. ...
Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 2 | A.51.02
Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. ...
Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 5 | A.51.02
Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. ...
Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02
Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. ...
Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 4 | A.51.02
Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. ...
Mehrdimensionale Funktion: Extrempunkte berechnen | A.51.02
Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. ...
Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 2 | A.51.03
Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht ...
Tangentialebene: Tangente einer mehrdimensionalen Funktion | A.51.03
Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht ...
Tangentialebene: Tangente einer mehrdimensionalen Funktion, Beispiel 1 | A.51.03
Eine Tangente ist bei einer Funktion mit mehreren Variablen keine Gerade, sondern eine Tangentialebene oder ein Tangentialraum (Letzteres brauchen Sie vermutlich nie). Es gibt recht viele Ansätze und Formeln dafür, die jedoch letztendlich alle auf das Gleiche führen. In jedem Fall braucht man die partiellen (ersten) Ableitungen der Funktion. Wir verwenden eine recht ...
Quelle
Systematik
Schlagwörter
- Partielle Ableitung (19)
- Mehrdimensionale Funktion (19)
- Funktion (Mathematik) (19)
- Analysis (19)
- Mathematik (19)
- Video (19)
- E-Learning (19)