Logarithmusfunktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Logarithmusfunktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Differentialrechnung Exponential- und Logarithmusfunktion
Übungsaufgaben und Beispiellösungen zu Ableitungen von Exponentialfunktion (e^x) Logarithmusfunktion (ln x) allgemeiner Exponentialfunktion (a^x) Logarithmusfunktion (log a (x))   
Logarithmusfunktion: Definitionsmenge bestimmen, Beispiel 1 | A.44.01
Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.
Logarithmusfunktion: Definitionsmenge bestimmen | A.44.01
Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.
Logarithmusfunktion: Definitionsmenge bestimmen, Beispiel 2 | A.44.01
Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.
Logarithmusfunktion: Definitionsmenge bestimmen, Beispiel 3 | A.44.01
Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.
Logarithmusfunktion: kurze Einführung | A.44
Logarithmusfunktionen erkennt man typischerweise am Logarithmus. Das ist eine gute Erkenntnis. Typisch an der Skizze einer Logarithmusfunktion ist die senkrechte Asymptote, wobei die Funktion jedoch entweder nur links oder nur rechts der Asymptote existiert.
Logarithmusfunktion: waagerechte / senkrechte Asymptote und Grenzwert berechnen, Beispiel 1 | A.44.6
Fast jede ln-Funktion hat eine senkrechte Asymptote, die wenigsten haben jedoch waagerechte oder schiefe Asymptoten. Man braucht die Definitionsmenge und lässt nun x gegen die beiden Grenzen dieser Definitionsmenge laufen.
Logarithmusfunktion ableiten | A.44.02
Die Ableitung einer ln-Funktion erhält man, in dem man das Argument des Logarithmus in den Nenner setzt. (Also 1 durch Argument). Hinter den Bruch muss natürlich noch die innere Ableitung gesetzt werden, man wendet demnach die Kettenregel an.
Logarithmusfunktion: waagerechte / senkrechte Asymptote und Grenzwert berechnen, Beispiel 2 | A.44.6
Fast jede ln-Funktion hat eine senkrechte Asymptote, die wenigsten haben jedoch waagerechte oder schiefe Asymptoten. Man braucht die Definitionsmenge und lässt nun x gegen die beiden Grenzen dieser Definitionsmenge laufen.
Logarithmusfunktion: waagerechte / senkrechte Asymptote und Grenzwert berechnen, Beispiel 5 | A.44.6
Fast jede ln-Funktion hat eine senkrechte Asymptote, die wenigsten haben jedoch waagerechte oder schiefe Asymptoten. Man braucht die Definitionsmenge und lässt nun x gegen die beiden Grenzen dieser Definitionsmenge laufen.