Logarithmusfunktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Logarithmusfunktion: kurze Einführung | A.44
Logarithmusfunktionen erkennt man typischerweise am Logarithmus. Das ist eine gute Erkenntnis. Typisch an der Skizze einer Logarithmusfunktion ist die senkrechte Asymptote, wobei die Funktion jedoch entweder nur links oder nur rechts der Asymptote existiert.
Logarithmusfunktion: waagerechte / senkrechte Asymptote und Grenzwert berechnen, Beispiel 1 | A.44.6
Fast jede ln-Funktion hat eine senkrechte Asymptote, die wenigsten haben jedoch waagerechte oder schiefe Asymptoten. Man braucht die Definitionsmenge und lässt nun x gegen die beiden Grenzen dieser Definitionsmenge laufen.
Logarithmusfunktion: waagerechte / senkrechte Asymptote und Grenzwert berechnen, Beispiel 2 | A.44.6
Fast jede ln-Funktion hat eine senkrechte Asymptote, die wenigsten haben jedoch waagerechte oder schiefe Asymptoten. Man braucht die Definitionsmenge und lässt nun x gegen die beiden Grenzen dieser Definitionsmenge laufen.
Logarithmusfunktion: waagerechte / senkrechte Asymptote und Grenzwert berechnen, Beispiel 5 | A.44.6
Fast jede ln-Funktion hat eine senkrechte Asymptote, die wenigsten haben jedoch waagerechte oder schiefe Asymptoten. Man braucht die Definitionsmenge und lässt nun x gegen die beiden Grenzen dieser Definitionsmenge laufen.
Quelle
Systematik
Schlagwörter
- Analysis (45)
- Logarithmusfunktion (44)
- Funktion (Mathematik) (44)
- E-Learning (44)
- Video (44)
- Logarithmus (43)
- Menge (Mathematik) (21)