Logarithmusfunktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Logarithmusfunktion: kurze Einführung | A.44
Logarithmusfunktionen erkennt man typischerweise am Logarithmus. Das ist eine gute Erkenntnis. Typisch an der Skizze einer Logarithmusfunktion ist die senkrechte Asymptote, wobei die Funktion jedoch entweder nur links oder nur rechts der Asymptote existiert.
Logarithmusfunktion: Stammfunktion bestimmen | A.44.04
Die Stammfunktion vom ln ist nicht ganz einfach zu errechnen. Wahrscheinlich müssen Sie dieses aber auch nie errechnen, sondern dürfen aus der Formelsammlung verwenden, dass für die Stammfunktion des Logarithmus gilt: f(x)=ln(x) == F(x)=x*ln(x)-x.
Logarithmusfunktion: Stammfunktion bestimmen, Beispiel 1 | A.44.04
Die Stammfunktion vom ln ist nicht ganz einfach zu errechnen. Wahrscheinlich müssen Sie dieses aber auch nie errechnen, sondern dürfen aus der Formelsammlung verwenden, dass für die Stammfunktion des Logarithmus gilt: f(x)=ln(x) == F(x)=x*ln(x)-x.
Schaubild einer Logarithmusfunktion erstellen, Beispiel 2 | A.44.07
ln-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.
Schaubild einer Logarithmusfunktion erstellen, Beispiel 3 | A.44.07
ln-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.
Quelle
Systematik
Schlagwörter
- Logarithmusfunktion (44)
- Funktion (Mathematik) (44)
- Analysis (44)
- E-Learning (44)
- Video (44)
- Logarithmus (43)
- Menge (Mathematik) (21)