Hesse-Matrix - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 1 | A.51.02
Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. ...
Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 2 | A.51.02
Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. ...
Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 5 | A.51.02
Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. ...
Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02
Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. ...
Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 4 | A.51.02
Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. ...
Mehrdimensionale Funktion: Extrempunkte berechnen | A.51.02
Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. ...
Partielle Ableitung, Beispiel 5 | A.51.01
Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der Ableitung sprechen, denn man muss schließlich präzisieren, ob man nach x, nach y oder was auch immer ableitet. Also spricht man von der partiellen Ableitung nach x, oder der partiellen Ableitung nach y, usw. Betrachtet man z.B. die Ableitung nach x (oder ...
Partielle Ableitung, Beispiel 3 | A.51.01
Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der Ableitung sprechen, denn man muss schließlich präzisieren, ob man nach x, nach y oder was auch immer ableitet. Also spricht man von der partiellen Ableitung nach x, oder der partiellen Ableitung nach y, usw. Betrachtet man z.B. die Ableitung nach x (oder ...
Partielle Ableitung, Beispiel 1 | A.51.01
Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der Ableitung sprechen, denn man muss schließlich präzisieren, ob man nach x, nach y oder was auch immer ableitet. Also spricht man von der partiellen Ableitung nach x, oder der partiellen Ableitung nach y, usw. Betrachtet man z.B. die Ableitung nach x (oder ...
Partielle Ableitung | A.51.01
Wenn eine Funktion von mehreren Variablen abhängt, kann man eigentlich nicht mehr von der Ableitung sprechen, denn man muss schließlich präzisieren, ob man nach x, nach y oder was auch immer ableitet. Also spricht man von der partiellen Ableitung nach x, oder der partiellen Ableitung nach y, usw. Betrachtet man z.B. die Ableitung nach x (oder ...
Quelle
- Bildungsmediathek NRW (123)
- Bildungsserver Hessen (26)
- Deutscher Bildungsserver (6)
- Lehrer-Online (5)
- IZ Professionalisierung der Elementarpädagogik (1)
- Select Hessen (1)
Systematik
- Mathematisch-Naturwissenschaftliche Fächer (130)
- Mathematik (128)
- Sprachen und Literatur (24)
- Deutsch (23)
- Literatur (22)
- Hesse, Hermann (17)
- Schriftstellerinnen, Schriftsteller (17)
Schlagwörter
- Mathematik (19)
- Analytische Geometrie (17)
- Vektor (17)
- Analysis (17)
- Hesse-Matrix (16)
- Partielle Ableitung (16)
- Mehrdimensionale Funktion (16)
Bildungsebene
- Sekundarstufe I (149)
- Sekundarstufe Ii (138)
- Berufliche Bildung (5)
- Primarstufe (2)
- Elementarbildung (1)
Lernressourcentyp
- Unterrichtsplanung (12)
- Arbeitsmaterial (9)
- Video/animation (5)
- Arbeitsblatt (3)
- Anderer Lernort (2)
- Kurs (1)
- Portal (1)