Gleichung mit 2 unbekannten - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Gleichung mit 2 unbekannten - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Einsatzverfahren: so löst man Gleichungen mit zwei Unbekannten | G.02.02
Hat man zwei Gleichungen mit zwei Unbekannten gegeben, so spricht man von einem „Linearen Gleichungssystem“ bzw. von einem 2x2 – LGS. Die Lösung über das sogenannte „Einsetzverfahren“ (oder auch „Substitutionsverfahren“) läuft folgender Maßen: Man sucht sich eine beliebige Variable von einer beliebigen Gleichung aus, z.B. „y“ aus der ersten Gleichung. Nun setzt ...
Einsatzverfahren: so löst man Gleichungen mit zwei Unbekannten, Beispiel 2 | G.02.02
Hat man zwei Gleichungen mit zwei Unbekannten gegeben, so spricht man von einem „Linearen Gleichungssystem“ bzw. von einem 2x2 – LGS. Die Lösung über das sogenannte „Einsetzverfahren“ (oder auch „Substitutionsverfahren“) läuft folgender Maßen: Man sucht sich eine beliebige Variable von einer beliebigen Gleichung aus, z.B. „y“ aus der ersten Gleichung. Nun setzt ...
Gauß-Verfahren: Gleichungssysteme mit drei Unbekannten mit dem Gauß Algorithmus lösen, Beispiel 2
Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Das bekannteste Lösungsverfahren dazu ist das Gauß-Verfahren. Man verrechnet zuerst die erste und zweite Gleichung so miteinander, dass die erste Unbekannte (ganz links) wegfällt bzw. Null ergibt. Danach verrechnet man erste und ...
Gleichungssysteme mit drei Gleichungen und drei Unbekannten lösen, Beispiel 2 | G.02.08
Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Eine Möglichkeit so ein LGS zu lösen, ist: man löst in irgendeiner Gleichung nach irgendeiner Variablen auf. Nun setzt man den Ergebnisterm dieser Variable in BEIDE anderen Gleichungen ein und erhält somit zwar nur noch zwei ...
Gauß-Verfahren: Gleichungssysteme mit drei Unbekannten mit dem Gauß Algorithmus lösen, Beispiel 1
Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Das bekannteste Lösungsverfahren dazu ist das Gauß-Verfahren. Man verrechnet zuerst die erste und zweite Gleichung so miteinander, dass die erste Unbekannte (ganz links) wegfällt bzw. Null ergibt. Danach verrechnet man erste und ...
Gauß-Verfahren: Gleichungssysteme mit drei Unbekannten mit dem Gauß Algorithmus lösen | G.02.07
Bei Gleichungssystemen mit drei Gleichungen und drei Unbekannten (3x3-LGS) gibt es nicht mehr so viele Lösungsmöglichkeiten, wie beim 2x2-LGS. Das bekannteste Lösungsverfahren dazu ist das Gauß-Verfahren. Man verrechnet zuerst die erste und zweite Gleichung so miteinander, dass die erste Unbekannte (ganz links) wegfällt bzw. Null ergibt. Danach verrechnet man erste und ...
Gleichsetzungsverfahren: so löst man Gleichungen mit zwei Unbekannten, Beispiel 2 | G.02.03
Hat man zwei Gleichungen mit zwei Unbekannten gegeben, so spricht man von einem „Linearen Gleichungssystem“ bzw. von einem 2x2 – LGS. Die Lösung über das sogenannte „Gleichsetzungsverfahren“ (oder „Gleichsetzverfahren“) läuft folgender Maßen: Man sucht sich eine beliebige Variable aus. Nun löst man BEIDE Gleichungen nach dieser Variable auf und setzt die beiden ...
Tangente außerhalb, Beispiel 2 | A.15.04
Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...
Normale außerhalb, Beispiel 2 | A.15.05
Eine „Normale von außen“ oder „Normale von außerhalb“ liegt vor, wenn der Punkt in welchem die (orthogonale) Normale auf der Funktion steht NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Normale liegt. Vorgehensweise: man verwendet die Normalenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit ...
Subtraktionsverfahren: so löst man Gleichungen mit zwei Unbekannten, Beispiel 2 | G.02.04
Hat man zwei Gleichungen mit zwei Unbekannten gegeben, so spricht man von einem „Linearen Gleichungssystem“ bzw. von einem 2x2 – LGS. Die Lösung über das sogenannte „Subtraktionsverfahren“ läuft folgender Maßen: Man sucht sich eine beliebige Variable aus, z.B. „x“. Nun multipliziert man beide Gleichungen derart, dass vor dieser Variable die gleiche Zahl, und auch ...