GLEICHUNGSSYSTEM - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
LGS / Lineare Gleichungssysteme | G.02
In der Mathematik hat man ganz häufig die Situation, mehrere Unbekannte bestimmen zu müssen, für die es wiederum mehrere Gleichungen gibt. Mehrere Gleichungen mit mehreren Unbekannten heißen Gleichungssystem. Für die Schule sind eigentlich nur Lineare Gleichungssysteme (LGS) mit zwei, höchstens mit drei Unbekannten relevant. Am wichtigsten sind LGS mit zwei ...
LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 2 | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
LGS lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 1 | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
Matrix lösen: keine Lösung, unlösbar, Widerspruch | M.02.06
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.
LGS lösen: keine Lösung, unlösbar, Widerspruch | M.02.03
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Das LGS ist unlösbar.
Matrix lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 2 | M.02.06
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.
Matrix lösen: keine Lösung, unlösbar, Widerspruch; Beispiel 1 | M.02.06
Der schönste Fall in Mathe ist immer der Widerspruch (so was wie 0=1). Stößt man auf so einen, ist man immer fertig und weiß, dass es keine Lösung gibt. Das ist bei einem Gleichungssystem nicht anders. Wenn man während des Gauß-Verfahrens auf einen Widerspruch stößt kann man getrost aufhören. Die Matrix ist unlösbar.
Gauß-Verfahren: Lineares Gleichungssystem lösen | M.02
Das gängigste Lösungsverfahren für ein Lineares Gleichungssystem ist das Gauß-Verfahren. Dafür stellt man sich die Diagonale des LGS vor und multipliziert und verrechnet nun die Gleichungen derart, dass man unter der Diagonalen nur noch Nullen hat. Nun kann man die Lösungen von x1, x2, x3, .. bestimmen, welche zusammen den Lösungsvektor ...
Quelle
Systematik
- Mathematisch-Naturwissenschaftliche Fächer (114)
- Mathematik (113)
- Lineare Gleichungssysteme (9)
- Gleichungen, Ungleichungen, Lineare Gleichungssysteme (9)
- Substitutionsverfahren (2)
- Additionsverfahren (2)
- Gleichsetzungsverfahren (2)
Schlagwörter
- Gleichungssystem (38)
- Lgs (22)
- Gleichung (Mathematik) (16)
- E-Learning (16)
- Video (16)
- Analysis (12)
- Steckbriefaufgabe (11)
Bildungsebene
- Sekundarstufe I (113)
- Sekundarstufe Ii (90)
- Hochschule (1)
- Fort- und Weiterbildung (1)
- Berufliche Bildung (1)