Funktion+(Mathematik) - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen | A.52.04
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 2
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 4
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 3
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 6
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 1
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Injektiv, surjektiv, bijektiv: wie oft wird der y-Wert einer Funktion angenommen, Beispiel 5
Bei Injektivität, Surjektivität und Bijektivität interessiert man sich dafür, wie oft die y-Werte einer Funktion (oder Abbildung) angenommen werden. Wird jeder y-Wert der Funktion höchstens einmal angenommen (also einmal oder keinmal) nennt man die Funktion injektiv (auch linkseindeutig oder linkstotal). Wird jeder y-Wert der Funktion mindestens einmal angenommen (also ...
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1a: wir zeichnen die Funktion
Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.
Quelle
- Bildungsmediathek NRW (4193)
- Bildungsserver Hessen (1195)
- Deutscher Bildungsserver (1015)
- Lehrer-Online (778)
- Select Hessen (188)
- Mauswiesel Hessen (101)
- MELT (62)
- Elixier Community (52)
- Handwerk macht Schule (48)
- Landesbildungsserver Baden-Württemberg (37)
- Landesbildungsserver Berlin-Brandenburg (31)
Systematik
- Mathematik (7010)
- Mathematisch-Naturwissenschaftliche Fächer (5235)
- Grundschule (2607)
- Fächerübergreifende Themen (735)
- Berufliche Bildung (498)
- Physik (477)
- Fächer der Beruflichen Bildung (404)
Schlagwörter
- E-Learning (2550)
- Video (1637)
- Analysis (1320)
- Mathematik (1259)
- Übungsmaterial (1190)
- Lernhilfen (1189)
- Grundrechenart (1181)
Bildungsebene
- Sekundarstufe I (4791)
- Sekundarstufe Ii (2653)
- Primarstufe (2504)
- Berufliche Bildung (200)
- Hochschule (137)
- Spezieller Förderbedarf (56)
- Elementarbildung (52)
Lernressourcentyp
- Simulation (1170)
- Arbeitsblatt (801)
- Unterrichtsplanung (779)
- Arbeitsmaterial (600)
- Lernkontrolle (356)
- Video/animation (280)
- Interaktives Material (197)


