Aufleiten - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Aufleiten - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Wurzelfunktion integrieren bzw. aufleiten, Beispiel 1 | A.45.03
Um die Stammfunktion einer Wurzel zu bestimmen, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die (umgekehrte) Kettenregel an und kann integrieren.
Wurzelfunktion integrieren bzw. aufleiten, Beispiel 3 | A.45.03
Um die Stammfunktion einer Wurzel zu bestimmen, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die (umgekehrte) Kettenregel an und kann integrieren.
Wurzelfunktion integrieren bzw. aufleiten, Beispiel 2 | A.45.03
Um die Stammfunktion einer Wurzel zu bestimmen, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die (umgekehrte) Kettenregel an und kann integrieren.
Polynom bzw. ganzrationale Funktion integrieren; Polynom-Integral bilden | A.14.01
Wie lässt sich ein Polynom ableiten: Polynome (ganzrationale Funktion oder auch Parabeln höherer Ordnung) integriert man (man sagt auch aufleiten) nach einer einfachen Formel. Die Hochzahl wird um eins erhöht, die neue Hochzahl kommt runter in den Nenner(!) und wird mit den eventuell vorhandenen Vorzahlen verrechnet.
Wurzelfunktion integrieren bzw. aufleiten | A.45.03
Um die Stammfunktion einer Wurzel zu bestimmen, muss man sie umschreiben. Die normale Wurzel schreibt um, zu einer Klammer mit der Hochzahl „0,5“. Nun wendet man die (umgekehrte) Kettenregel an und kann integrieren.
Flächen berechnen bzw. Integral berechnen mit der Stammfunktion F(x) | A.11.04
Fläche berechnen bzw. Integral berechnen: Die Stammfunktion F(x) benötigt man, um eine Fläche oder ein Integral zu berechnen. Die Stammfunktion nennt man auch Flächenfunktion.
Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung | A.27.04
Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.
Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung, Beispiel 4 | A.27.04
Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.
Gebrochen-rationale Funktionen integrieren bzw. aufleiten, Beispiel 1 | A.43.04
Es gibt drei Typen von gebrochen-rationalen Funktionen, die man verhältnismäßig einfach integrieren kann. 1.Funktionen, die im Nenner (unten) kein „+“ oder „-“ haben. Diese Funktionen kann man aufspalten und dann recht einfach integrieren. 2. Funktionen, die oben nur eine Zahl haben, unten eine Klammer ohne Hochzahl. Die Stammfunktion wird führt man auf den Logarithmus ...
Polynom bzw. ganzrationale Funktion integrieren; Polynom-Integral bilden, Beispiel 4 | A.14.01
Wie lässt sich ein Polynom ableiten: Polynome (ganzrationale Funktion oder auch Parabeln höherer Ordnung) integriert man (man sagt auch aufleiten) nach einer einfachen Formel. Die Hochzahl wird um eins erhöht, die neue Hochzahl kommt runter in den Nenner(!) und wird mit den eventuell vorhandenen Vorzahlen verrechnet.