Analytische Mathematik - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Analytische Mathematik - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Kreuzprodukt (Mathematik)
Ein Kreuzprodukt ist die Verknüpfung zweier Vektoren, dessen Ergebnis wieder ein Vektor ist, der senkrecht auf den beiden Vektoren steht.
Parallelität von Geraden
Parallelität ist eine besondere Lagebeziehung zwischen zwei Geraden. Zwei Graden sind genau dann parallel, wenn sie sich nicht schneiden.
Skalarprodukt (Mathematik)
Das Skalarprodukt ist eine Multiplikation von zwei Vektoren. Sein Ergebnis ist eine relle Zahl (Im Gegensatz zum Kreuzprodukt, dessen Ergebnis ein Vektor ist).
Orthogonalität (Mathematik)
Bei Orthogonalität handelt es sich um einen Begriff der u.a. in der analytischen Geometrie verwendet wird. Zwei Objekte heißen orthogonal zueinander, wenn sie senkrecht aufeinander stehen.
Vektoren addieren und subtrahieren
Die Addition und Subtraktion von Vektoren wird komponentenweise berechnet.
Digitales Schulbuch O-Mathe
Digitales Mathematik-Schulbuch für die Oberstufe, das sich am Lehrplan für das Land Rheinland-Pfalz orientiert, dennoch anstrebt auch in anderen Bundesländern eingesetzt zu werden. Das digitale Schulbuch wird sukzessiv aufgebaut und ist frei nutzbar. Es behandelt Themen wie lineare Gleichungssysteme, analytische Geometrie und in Zukunft auch Differential- und ...
HTML5-Apps zur Mathematik
Arithmetik, ebene Geometrie, Raumgeometrie, Kugelgeometrie, Trigonometrie, Vektorrechnung, analytische Geometrie
Analytische Geometrie (Vektoren)
Vektorgeometrie (auch „analytische Geometrie“ genannt) befasst sich mit linearen Berechnungen in Räumen (meist im dreidimensionalen Raum). Die Objekte, mit denen man rechnet sind Punkte, Geraden, Ebenen, Kugeln. Diese untersucht man auf gemeinsame Punkte (Schnittpunkte) und berechnet Abstände. Das macht eigentlich schon 80% der Vektorgeometrie in der Schule aus. Eine ...
Ebene (Mathematik)
Eine Ebene ist ein Objekt der analytischen Geometrie im dreidimensionalen Raum.