Abbildung (Mathematik) - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Affine Abbildung; Eigenvektor, Beispiel 1 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Affine Abbildung | M.09
Eine affine Abbildung wird durch Matrizen beschrieben. Die Matrizen nehmen Vektoren (als eine Art x-Werte) und machen daraus neue Vektoren (eine Art y-Werte). Die Abbildungen können Drehungen sein, Verschiebungen, Streckungen, Spiegelungen, Scherungen und noch ein paar andere Möglichkeiten. Die ein- oder andere Idee ist noch wichtig, das machen wir hier ...
Affine Abbildung; Eigenvektor, Beispiel 6 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Affine Abbildung; Eigenvektor, Beispiel 2 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Affine Abbildung; Eigenvektor, Beispiel 3 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Affine Abbildung; Eigenvektor, Beispiel 4 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Affine Abbildung; Eigenvektor, Beispiel 5 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Quelle
- Bildungsmediathek NRW (15)
- Lehrer-Online (7)
- Sächsischer Bildungsserver (4)
- Bildungsserver Hessen (2)
- Landesbildungsserver Berlin-Brandenburg (1)
- Handwerk macht Schule (1)
- Mauswiesel Hessen (1)
- Deutscher Bildungsserver (1)
Systematik
- Mathematik (26)
- Mathematisch-Naturwissenschaftliche Fächer (24)
- Grundschule (7)
- Fächerübergreifende Themen (6)
- Berufliche Bildung (5)
- Überblick, Allgemeines (4)
- Mathematik und Physik (4)
Schlagwörter
- Mathematik (10)
- Affine Transformation (8)
- Affine Abbildung (8)
- Affine Abbildungen (8)
- Funktion (Mathematik) (8)
- Surjektivität (7)
- Rechtstotal (7)
Bildungsebene
Lernressourcentyp
- Arbeitsmaterial (5)
- Unterrichtsplanung (3)
- Arbeitsblatt (1)
- Interaktives Material (1)
- Lernkontrolle (1)