Ergebnis der Suche (6)
Ergebnis der Suche nach: (Freitext: FUNKTIONSANALYSE)
Es wurden 458 Einträge gefunden
- Treffer:
- 51 bis 60
-
Funktionsanalyse einer Wurzelfunktion: Übungen und Beispiele, Beispiel 2 | A.45.09
Ein paar Beispiele von Funktionsuntersuchungen von Wurzel-Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, die Definitionsmenge, alle Asymptoten und fertigen eine Skizze.)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009616" }
-
Kurvendiskussion Beispiel 3b: Funktion auf Symmetrie untersuchen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009010" }
-
Kurvendiskussion Beispiel 3h: Fläche zwischen Funktion und der an x-Achse gespiegelten Funktion
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009016" }
-
Kurvendiskussion Beispiel 3d: Extrema berechnen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009012" }
-
Analysis 2 | Grundlagen der Funktionsanalyse / Kurvendiskussion
Die Analysis beschäftigt sich mit Funktionen. Die aus mathematischer Sicht interessantesten Punkte sind unter dem Oberbegriff Funktionsanalyse bzw. Kurvendiskussion zusammengefasst. Darin enthalten sind Schnittpunkte mit den Achsen, Hoch-, Tief- und Wendepunkte, evtl. noch Asymptoten. Als sehr wichtiges Hilfsmittel benötigt man die Ableitungen (=Differenzial) und das ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008621" }
-
Kurvendiskussion Beispiel 3f: Funktion zeichnen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009014" }
-
Kurvendiskussion Beispiel 3: gespiegelte Funktion; Berührpunkt; doppelte Nullstelle | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009008" }
-
Kurvendiskussion Beispiel 3c: Nullstellen berechnen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009011" }
-
Kurvendiskussion Beispiel 3a: Ableitungen bestimmen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009009" }
-
Kurvendiskussion Beispiel 3g: Wendenormale berechnen | A.19.03
Wir führen eine Funktionsanalyse einer Funktion durch, die nicht symmetrisch ist. Besonderheit ist ein Berührpunkt mit der x-Achse (also eine doppelte Nullstelle). Desweiteren bestimmen wir die Wendenormale und die Funktion, die durch Spiegelung an der x-Achse entsteht. Zum Schluss bestimmen wir noch die Flächen zwischen: gespiegelte Funktion und f(x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009015" }