Ergebnis der Suche (5)

Ergebnis der Suche nach: (Freitext: SCHAUBILD)

Es wurden 191 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Schaubild einer Ableitungsfunktion zeichnen / skizzieren, Beispiel 3 | A.27.03

    Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte „NEW“-Tabelle ist schneller, funktioniert aber bei manchen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009218" }

  • Was ist ʺKritische Theorieʺ

    Schaubild zur Beantwortung der Frage

    Details  
    { "HE": [] }

  • Schaubild einer Ableitungsfunktion zeichnen / skizzieren, Beispiel 6 | A.27.03

    Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte „NEW“-Tabelle ist schneller, funktioniert aber bei manchen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009221" }

  • Schaubild einer Ableitungsfunktion zeichnen / skizzieren | A.27.03

    Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte „NEW“-Tabelle ist schneller, funktioniert aber bei manchen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009215" }

  • Aus dem Schaubild einer ganzrationalen Funktion die Funktionsgleichung erstellen | A.46.07

    Kann man aus dem Schaubild so viele Nullstellen ablesen, wie der Grad der Funktion ist, stellt man die Funktion einfach über die Linearfaktoren auf (siehe Kap.3.6.3). Kann man weniger Nullstellen ablesen, als der Grad ist, muss man, um die Funktionsgleichung zu erhalten, Hoch-, Tief-, Wendepunkte oder einfache, normale Punkte der Funktion ablesen und die Funktion über ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009646" }

  • Schaubild einer Ableitungsfunktion zeichnen / skizzieren, Beispiel 1 | A.27.03

    Es gibt eine relativ gute Methode, das Schaubild einer Ableitungsfunktion zu zeichnen: man zeichnet in einem beliebigen Punkt eine Tangente und misst deren Steigung. Die Steigung der Tangente ist der y-Wert der Ableitungsfunktion. Leider ist diese Methode nicht die schnellste. Die Methode über die sogenannte „NEW“-Tabelle ist schneller, funktioniert aber bei manchen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009216" }

  • Was ist Stoizismus?

     Schaubild: Die antike Denkströmung Stoizismus, die sich durch ihre praktische Lebensphilosophie der inneren Gelassenheit und Vernunftanwendung auszeichnet. Philosophie-Magazin

    Details  
    { "HE": [] }

  • Umkehrfunktion zeichnen / Schaubild der Umkehrfunktion | A.28.02

    Das Schaubild einer Umkehrfunktion erstellt man aus der ursprünglichen Funktion durch Spiegelung an der ersten Winkelhalbierenden (y=x). (Man vertauscht also x-Werte und y-Werte“.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009239" }

  • Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen, Beispiel 3

    Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009532" }

  • Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung, Beispiel 1 | A.27.04

    Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009223" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite