Ergebnis der Suche (4)
Ergebnis der Suche nach: (Freitext: WINKEL)
Es wurden 251 Einträge gefunden
- Treffer:
- 31 bis 40
-
Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen, Beispiel 3 | B.07.02
Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009915" }
-
Winkel an geschnittenen Parallelen
Details { "SN": "DE:SBS:34" }
-
Winkel und Schnittwinkel berechnen, Beispiel 3 | V.05.01
Für die Winkelberechnung gibt es eigentlich nur eine einzige Formel. Für den Schnittwinkel von zwei Geraden verwendet man die Formel: cos(alpha) = |u*v| / |u|*|v|, wobei u und v die Richtungsvektoren der Geraden sind. Den Schnittwinkel von zwei Ebenen nimmt man die gleiche Formel, nur dass u und v die Normalenvektoren sind. Den Schnittwinkel zwischen einer Gerade und einer ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010489" }
-
Symmetrie
Details { "HE": "DE:HE:1341983" }
-
So zeichnet man eine trigonometrische Funktion, Beispiel 1 | T.01.08
Normalweise berechnet man Winkel in Grad. Wenn man allerdings nicht Winkel braucht, sondern Winkelfunktionen [y=sin(x), y=cos(x),..] dann ist die Messung in Grad ziemlich ungeschickt (die Gründe sind erst mal egal), in diesem Fall misst man Winkel in Bogenmaß (=Radianten).Kurz gesagt: will man die Größe eines Winkels wissen, stellt man den Taschenrechner auf Gradmaß ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010309" }
-
Winkel und Schnittwinkel berechnen, Beispiel 2 | V.05.01
Für die Winkelberechnung gibt es eigentlich nur eine einzige Formel. Für den Schnittwinkel von zwei Geraden verwendet man die Formel: cos(alpha) = |u*v| / |u|*|v|, wobei u und v die Richtungsvektoren der Geraden sind. Den Schnittwinkel von zwei Ebenen nimmt man die gleiche Formel, nur dass u und v die Normalenvektoren sind. Den Schnittwinkel zwischen einer Gerade und einer ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010488" }
-
Winkel und Schnittwinkel berechnen, Beispiel 5 | V.05.01
Für die Winkelberechnung gibt es eigentlich nur eine einzige Formel. Für den Schnittwinkel von zwei Geraden verwendet man die Formel: cos(alpha) = |u*v| / |u|*|v|, wobei u und v die Richtungsvektoren der Geraden sind. Den Schnittwinkel von zwei Ebenen nimmt man die gleiche Formel, nur dass u und v die Normalenvektoren sind. Den Schnittwinkel zwischen einer Gerade und einer ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010491" }
-
Winkelfunktionen, Winkelmodus mit dem Taschenrechner berechnen, Beispiel 1 | B.07.02
Winkel kann man unglücklicher Weise auf zwei Arten berechnen. Entweder in Grad oder in Radianten. Das Gradmaß ist intuitiver. Man verwendet es wenn man die Größe von Winkeln angeben muss. Radianten verwendet man bei Winkelfunktionen, also bei Sinus-, Kosinus- oder Tangensfunktionen. (Blöde, unmathematische Eselsbrücke: ist in der Aufgabe der Winkel mit griechischen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009913" }
-
Winkel an geschnittenen Parallelen
Details { "SN": "DE:SBS:34" }
-
Winkel und Schnittwinkel berechnen, Beispiel 1 | V.05.01
Für die Winkelberechnung gibt es eigentlich nur eine einzige Formel. Für den Schnittwinkel von zwei Geraden verwendet man die Formel: cos(alpha) = |u*v| / |u|*|v|, wobei u und v die Richtungsvektoren der Geraden sind. Den Schnittwinkel von zwei Ebenen nimmt man die gleiche Formel, nur dass u und v die Normalenvektoren sind. Den Schnittwinkel zwischen einer Gerade und einer ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010487" }