Ergebnis der Suche (3)
Ergebnis der Suche nach: (Freitext: STOCHASTIK)
Es wurden 358 Einträge gefunden
- Treffer:
- 21 bis 30
-
Verteilungsfunktion (Mathematik)
Die Verteilungsfunktion einer Zufallsgröße X ordnet jeder rellen Zahl k die Wahrscheinlichkeit zu, mit der X höchstens den Wert k annimmt.
Details { "DBS": "DE:DBS:56197" }
-
Hypothesentest (Mathematik)
Bei einem Hypothesentest stehen sich zwei einander widersprechende Behauptungen / Vermutungen (sog. Hypothesen) gegenüber.
Details { "DBS": "DE:DBS:56156" }
-
Stochastik, Statistik, Wahrscheinlichkeit: Basiswissen und Definitionen, die man kennen sollte |W.11
In diesem Kapitel kämpfen wir uns durch die Erläuterungen und Definitionen. Also: Was für Begriffe gibt es in der Stochastik, was ist ein Mittelwert, eine Standardabweichung, wie zeichnet man die wichtigsten Diagrammtypen ein (z.B. ein Venn-Diagramm),
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010680" }
-
Bernoulli-Kette (Mathematik)
Wird ein Bernoulli-Experiment (d. h. ein Experiment mit nur zwei möglichen Ergebnissen) n-mal voneinander unabhängig wiederholt, so spricht man von einer Bernoulli-Kette der Länge n.
Details { "DBS": "DE:DBS:56181" }
-
Bernoulli Experiment
Ein Bernoulli-Experiment ist ein Zufallsexperiment mit genau zwei möglichen Versuchsausgängen. Für ein Bernoulli-Experiment wird eine Bernoulli-verteilte Zufallsvariable X betrachtet.
Details { "DBS": "DE:DBS:56180" }
-
Ereignis (Mathematik)
Eine beliebige Teilmenge des Ergebnisraumes Omega wird in der Stochastik als Ereignis bezeichnet. Man sagt, ein Ereignis "tritt ein", wenn eines der in ihm enthaltenen Elemente bei der Durchführung des Zufallsexperimentes als Ergebnis herauskommt.
Details { "DBS": "DE:DBS:55926" }
-
Unabhängigkeit von Ereignissen (Mathematik)
Zwei Ereignisse A und B heißen voneinander (stochastisch) unabhängig, wenn das Eintreten des einen Ereignisses die Wahrscheinlichkeit des Eintretens des anderen Ereignissess nicht beeinflusst.
Details { "DBS": "DE:DBS:56162" }
-
Erwartungswert (Mathematik)
Der Erwartungswert ist ein Wert in der Stochastik und kommt im Zusammenhang mit Zufallsgrößen vor. Man kann sagen, der Erwartungswert festigt sich als Mittelwert der Ergebnisse bei mehrmaligem Wiederholen eines Experiments.
Details { "DBS": "DE:DBS:55969" }
-
Absolute Häufigkeit
Die absolute Häufigkeit gibt an, wie oft bei einem Experiment ein bestimmtes Ereignis eintritt. Als Anzahl ist sie immer eine natürliche Zahl zwischen Null und der Gesamtzahl von Versuchen.
Details { "DBS": "DE:DBS:56007" }
-
Relative Häufigkeit
Während die absolute Häufigkeit angibt, wie oft ein bestimmtes Ereignis eintritt (Anzahl), beschreibt die relative Häufigkeit, wie groß der Anteil der absoluten Häufigkeit an der Gesamtzahl der Versuche ist. Dies ist eine Methode Wahrscheinlichkeiten praktisch zu bestimmen.
Details { "DBS": "DE:DBS:55925" }