Ergebnis der Suche (21)

Suche nach Ergebnis der Suche (21) (405)

Multinomialkoeffizient: was ist das und wie rechnet man damit, Beispiel 1 | W.12.03
Der Multinomialkoeffizient wird eigentlich sehr selten verwendet, kann aber recht hilfreich sein. So wie man den Binomialkoeffizienten bei ZWEI Auswahlmöglichkeiten anwendet, kommt der Multinomialkoeffizient bei mehreren Auswahlmöglichkeiten zum Zug. Wenn man wissen will, wieviel Möglichkeiten es gibt, mehrere Sorten miteinander zu vertauschen, kommt der ...
Wahrscheinlichkeitsrechnung Formeln: die wichtigsten Formeln, die man kennen sollte | W.15
Die wichtigsten Formeln der Wahrscheinlichkeit haben wir in dieses Kapitel gepackt. Die meisten Aufgaben kann man in der Wahrscheinlichkeit zwar ohne Formeln bzw. mit sehr wenig Formeln lösen (man muss leider dafür mehr nachdenken). Für einiges braucht man jedoch sehr wohl Formeln. Zu den wichtigsten gehören: der Additionssatz, stochastische Abhängigkeit/Unabhängigkeit, ...
Statistik-Diagramme: Boxplot, Histogramm, Kreisdiagramm und mehr. Beispiel 3 | W.11.04
Es gibt eine Unzahl von Diagrammen. Die (meines Erachtens nach) wichtigsten sind: 1. Säulendiagramm ( = Balkendiagramm = Histogramm ), 2. Kreisdiagramm, 3. Boxplot (bzw. Boxplotdiagramm, zu deutsch: Kastengrafik). Hier erklären wir kurz, wie man vorgeht, um diese drei zu zeichnen.
Poisson-Verteilung Beispiel Wartezeit-Problem, Teil 1 | W.19.02
Man verwendet die Poisson-Verteilung häufig, wenn man eine ZEIT-Abschnitt betrachtet. Ein Standardbeispiel davon ist, das Wartezeitproblem. Man weiß, wie häufig ein Bis im Durchschnitt auftaucht und möchte wissen, wie lange die Wartezeit bis zum nächsten Auftauchen des Busses ist. Eine unglaublich tolle Aufgabe, ohne die das Leben kaum lebenswert ist.
Kombinatorik Beispiele: wie man vertauschen und kombinieren kann, Beispiel 1 | W.12.01
Es gibt für fast jeden Typ von Vertauschungsmöglichkeiten eine Formel. Es gibt Kombinationen, Permutationen, Fakultäten, Binomialkoeffizienten, und vieles mehr. Manchmal hilft auch einfach Nachdenken. Für einige Vertauschungsmöglichkeiten gibt gute Vorgehensweisen, ohne irgendwelche Formeln. Hier sind ein paar Beispiele dazu.
Poisson-Verteilung Beispiel Wartezeit-Problem | W.19.02
Man verwendet die Poisson-Verteilung häufig, wenn man eine ZEIT-Abschnitt betrachtet. Ein Standardbeispiel davon ist, das Wartezeitproblem. Man weiß, wie häufig ein Bis im Durchschnitt auftaucht und möchte wissen, wie lange die Wartezeit bis zum nächsten Auftauchen des Busses ist. Eine unglaublich tolle Aufgabe, ohne die das Leben kaum lebenswert ist.
Binomialverteilung Bernoulli-Formel mit Binomialkoeffizient | W.16.01
Die Formel für die Binomialverteilung heißt auch „Bernoulli-Formel“ und setzt sich aus drei Teilen zusammen. Zum einen der Binomialkoeffizient (der die Vertauschungsmöglichkeiten angibt), die W.S. der ersten Möglichkeit hoch der Anzahl davon, sowie die W.S. der zweiten Möglichkeit hoch der Anzahl davon. Als Formel: Sei n die Gesamtanzahl aller Züge, k sei die Anzahl ...
Standardnormalverteilung: was das ist und wie man damit rechnet, Beispiel 3 | W.18.02
Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).
Totale Wahrscheinlichkeit, Beispiel 3 | W.14.06
Eine totale Wahrscheinlichkeit ist eine Wahrscheinlichkeit, die sich aus mehreren Fällen zusammensetzt. Z.B. wenn man die W.S. berechnen will, dass eine Person Schmuck trägt, setzt sich das aus der W.S. zusammen, dass eine Frau schmuck trägt, plus der W.S., dass ein Mann Schmuck trägt.
Kombinatorik Beispiele: wie man vertauschen und kombinieren kann, Beispiel 3 | W.12.01
Es gibt für fast jeden Typ von Vertauschungsmöglichkeiten eine Formel. Es gibt Kombinationen, Permutationen, Fakultäten, Binomialkoeffizienten, und vieles mehr. Manchmal hilft auch einfach Nachdenken. Für einige Vertauschungsmöglichkeiten gibt gute Vorgehensweisen, ohne irgendwelche Formeln. Hier sind ein paar Beispiele dazu.