Ergebnis der Suche (9)
Ergebnis der Suche nach: (Freitext: FLÄCHENBERECHNUNG)
Es wurden 130 Einträge gefunden
- Treffer:
- 81 bis 90
-
Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 1 | A.18.02
Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008936" }
-
Dreiecksfläche berechnen, Beispiel 1 | A.18.08
Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008975" }
-
Flächenberechnung mit Integralen
Das Integral stellt einen orientierten Flächeninhalt dar, doch man kann damit auch Flächeninhalte allgemeinerer Flächen, die durch Einschluss verschiedener Funktionsgraphen gegeben sind, berechnen.
Details { "DBS": "DE:DBS:56087" }
-
Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 2 | A.18.02
Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008937" }
-
Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 4 | A.18.02
Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008939" }
-
Flächenberechnung
Mithilfe dieses Arbeitsblattes von "Handwerk macht Schule" berechnen die Schülerinnen und Schüler am Beispiel alltäglicher Sachprobleme auf einer Baustelle die Flächeninhalte verschiedener geometrischer Figuren. Dadurch haben die Lernenden die Möglichkeit, ihre Kenntnisse im Bereich der Flächenberechnung zu vertiefen. Dabei wenden sie die entsprechenden Formeln ...
Details { "DBS": "DE:DBS:64143", "LO": "DE:LO:de.lehrer-online.un_1007906" }
-
Fläche zwischen drei Funktionen berechnen / eingeschlossene Fläche, Beispiel 3 | A.18.04
Wenn man eine Fläche zwischen drei Funktionen berechnen soll, geht das nicht direkt. Man muss die Fläche aufteilen, so dass sich sowohl unterhalb als auch oberhalb der Fläche nur je EINE Funktion befindet. Meist befindet sich zwischen den linker und rechter Grenze der eingeschlossenen Flächen irgendein Schnittpunkt von zwei Funktionen. An diesem Schnittpunkt teilt man die ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008952" }
-
Mit Keplersche Fassregel Flächeninhalt bestimmen | A.32.04
Es gibt Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Eines dieser Näherungsverfahren ist die Keplersche Fassregel. Der Vorteil an der Keplerschen Fassregel ist der, dass sie recht einfach ist und recht akzeptable, also recht genaue Ergebnisse liefert. Der große Nachteil ist: man weiß nicht wie genau das erhaltene Ergebnis ist. Man weiß nicht, ob die ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009368" }
-
Uneigentliche Integrale berechnen, Beispiel 1 | A.18.05
Eine uneigentliches Integral ist einfach nur ein Integral einer Fläche, die unendlich lang und dünn ist. Eine der Grenzen ist daher meistens auch unendlich. Zur Schreibweise: Normalweise darf man unendlich nicht als Integralgrenze hinschreiben. Also schreibt man u (oder irgendeinen anderen Buchstaben) hin, lässt zum Schluss u gegen unendlich laufen und ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008957" }
-
Mit Keplersche Fassregel Flächeninhalt bestimmen, Beispiel 2 | A.32.04
Es gibt Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Eines dieser Näherungsverfahren ist die Keplersche Fassregel. Der Vorteil an der Keplerschen Fassregel ist der, dass sie recht einfach ist und recht akzeptable, also recht genaue Ergebnisse liefert. Der große Nachteil ist: man weiß nicht wie genau das erhaltene Ergebnis ist. Man weiß nicht, ob die ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009370" }