Wahrscheinlichkeitsrechnung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (4)

Ergebnis der Suche nach: (Freitext: WAHRSCHEINLICHKEITSRECHNUNG)

Es wurden 112 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
31 bis 40
  • Vierfeldertafel | Wahrscheinlichkeitsrechnung Formeln W.15.04

    Man kann die bedingte Wahrscheinlichkeit (auch „konditionale Wahrscheinlichkeit“) natürlich auch über eine Vierfeldertafel berechnen. Natürlich ist nichts anders, als bei der „normalen“ bedingten Wahrscheinlichkeit, außer dass man halt eine Vierfeldertafel hat.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010763" }

  • t-Verteilung

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Wann man die t-Verteilung nutzt, wird hier gezeigt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004590" }

  • Skalen, Skalenniveaus

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Wie man mit Skalenniveaus arbeitet, erfahren Sie hier.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004588" }

  • Erwartungswert berechnen, Beispiel 3 | Wahrscheinlichkeitsrechnung Formeln W.15.06

    Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010777" }

  • Erwartungswert berechnen, Beispiel 2 | Wahrscheinlichkeitsrechnung Formeln W.15.06

    Ein Erwartungswert ist ein Mittelwert oder ein Durchschnitt (von irgendwelchen Zahlen, die man hier Zufallsvariable nennt). Man berechnet den Erwartungswert, indem man jedes mögliche auftretende Ereignis mit dessen Wahrscheinlichkeit multipliziert und dann alles addiert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010776" }

  • Signifikanz, Signifikanzniveau

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier wird das Signifikanzniveau erläutert.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004587" }

  • Gegenereignis (Mathematik)

    Gegenereignis ist ein Begriff aus der Stochastik .

    Details  
    { "DBS": "DE:DBS:56019" }

  • Vom Lotto zum Pascalschen Dreieck

    Diese etwas andere Art der Kurvendiskussion stellt eine Verbindung zwischen der Analysis der Oberstufe und den Inhalten der Stochastik her (ab Jahrgangsstufe 12).; Lernressourcentyp: Arbeitsblatt (druckbar); Software (Anwendung oder Lehr- und Lernsoftware); Mindestalter: 15; Höchstalter: 18

    Details  
    { "DBS": "DE:DBS:53718" }

  • Verknüpfung von Ereignissen mit der Mengenschreibweise

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier wird erläutert, wie man Ereignisse mit der Mengenschreibweise verknüpft.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004591" }

  • Was ist schon normal? - von der Binomial- zur Normalverteilung

    Die Untersuchung von Binomialverteilungen führt über den integralen und lokalen Grenzwertsatz zu ihrer Approximation durch die Normalverteilung (Sek II).; Lernressourcentyp: Lernmaterial; Arbeitsblatt (interaktiv); Mindestalter: 15; Höchstalter: 18

    Details  
    { "DBS": "DE:DBS:53287" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite