Standardabweichung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (3)

Ergebnis der Suche nach: (Freitext: STANDARDABWEICHUNG)

Es wurden 30 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Stochastik, Statistik, Wahrscheinlichkeit: Basiswissen und Definitionen, die man kennen sollte |W.11

    In diesem Kapitel kämpfen wir uns durch die Erläuterungen und Definitionen. Also: Was für Begriffe gibt es in der Stochastik, was ist ein Mittelwert, eine Standardabweichung, wie zeichnet man die wichtigsten Diagrammtypen ein (z.B. ein Venn-Diagramm),

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010680" }

  • Tschebyscheff-Ungleichung, Beispiel 1 | Wahrscheinlichkeitsrechnung Formeln W.15.07

    Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010779" }

  • Tschebyscheff-Ungleichung, Beispiel 3 | Wahrscheinlichkeitsrechnung Formeln W.15.07

    Die Tschebyscheff-Ungleichung ist eine relativ einfache Formel mit welcher man bestimmen kann, wie hoch die Wahrscheinlichkeit ist, dass ein Ereignis um einen bestimmten Wert vom Erwartungswert abweicht. Man braucht dazu nur den Erwartungswert und die Standardabweichung. (Tschebyscheff taucht auch in der Schreibweise: Tschebyschew oder Tschebyschow auf).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010781" }

  • Moivre-Laplace Näherungsformel, Beispiel 2 | W.18.03

    Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010827" }

  • Moivre-Laplace Näherungsformel | W.18.03

    Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010825" }

  • Moivre-Laplace Näherungsformel, Beispiel 1 | W.18.03

    Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010826" }

  • Moivre-Laplace Näherungsformel, Beispiel 3 | W.18.03

    Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010828" }

  • Laplace Wahrscheinlichkeit: Laplace-Experiment, Moivre-Laplace, Laplace-Gleichung | W.14.07

    Laplace war ein Mathematiker, sehr in recht vielen Bereichen tätig war. Der Begriff „Laplace“ taucht also auch in der Wahrscheinlichkeitstheorie häufig und mit unterschiedlichen Bedeutungen(!) auf. 1. Das „Laplace-Experiment“ ist ein Versuch in dem alle denkbaren Ausgänge die gleiche W.S. haben. Z.B. der Münzwurf (W.S. ist je 50%), der ideale Würfel mit der W.S. von ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010748" }

  • Messunsicherheiten interaktiv entdecken

    In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler Grundlagen zum Thema "Messunsicherheiten" mithilfe von fünf Erklärvideos und Übungsaufgaben kennen.

    Details  
    { "LO": "DE:LO:de.lehrer-online.un_1007714" }

  • Normalverteilung: was ist das und wie rechnet man damit richtig | W.18

    Die Mehrzahl der zufälligen Ereignisse im Universum sind normalverteilt. Diese Verteilung wird durch eine Funktion beschrieben, durch die Gaußsche Glockenkurve (das ist nichts Anzügliches). Das Schöne daran ist, dass man (um diese Funktion aufzustellen) nur den Erwartungswert und die Standardabweichung braucht. Man verwendet die Normalverteilung nur bei stetigen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010816" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite