Heterogenit��t - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (56)
Ergebnis der Suche nach: (Freitext: HETEROGENIT��T)
Es wurden 640 Einträge gefunden
- Treffer:
- 551 bis 560
-
Matrix lösen: unendlich viele Lösung mit Gauß-Verfahren | M.02.05
Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat (es also zwei oder noch weniger Zeilen gibt wie Spalten) oder man in der Diagonale eine Null erhält, erhält man (meist) unendlich viele Lösungen (auch mehrdeutige Lösung genannt). Man wählt nun für eine ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010154" }
-
Kugel berechnen: Kugelvolumen, Kugeloberfläche, Halbkugel; Beispiel 1 | T.06.07
Kugeln sind rund, gehören also zu den Rundkörpern. Das ist toll! Kugeln sind von der Struktur her, recht einfach. Volumen und Oberfläche berechnet mit je einer Formel, in welche nur der Radius einfließt. Um die Aufgaben etwas anspruchsvoller zu gestalten, hat man es daher oft mit Halbkugeln zu tun oder irgendwelchen Aufgaben, bei denen man um die Ecke denken ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010328" }
-
Elixier - Suchmaschine für Bildungsmedien: Suchergebnisse "berufliche Bildung allgemein"
Im Rahmen des Kooperationsprojekts Elixier werden Verweise auf Unterrichtmaterialien des Deutschen Bildungsservers und einiger Landesbildungsserver über eine Suchmaske zugänglich gemacht. Die Ergebnisse der Suche nach "Berufliche Bildung allgemein" beinhalten Treffer aus den Bereichen: Arbeitsmarkt, Arbeitssicherheit, Berufsausbildung, Berufsbildungsforschung, ...
Details { "DBS": "DE:DBS:33683" }
-
Sinus und arcsin und wie man richtig damit rechnet, Beispiel 2 | T.01.04
Der Sinus ist eine sogenannte Winkelfunktion. Der Sinus ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Hypotenuse aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Hypotenuse (H) nennt man Arkussinus (im ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010291" }
-
Interaktive Elemente zum Thema Datenbanken
Es sind folgende interaktive Elemente verfügbar: Konzeptueller Entwurf ER-Diagramm Konzeptueller Entwurf am Beispiel Relationenmodell Umwandlung ER-Schema in logisches Schema Relationale Algebra am Beispiel Entwurfstheorie Anomalien am Beispiel Normalisierung am Beispiel Synthesealgorithmus an unterschiedlichen Beispielen SQL Verschiedene ...
Details { "SN": "DE:SBS:581" }
-
So zeichnet man eine trigonometrische Funktion, Beispiel 1 | T.01.08
Normalweise berechnet man Winkel in Grad. Wenn man allerdings nicht Winkel braucht, sondern Winkelfunktionen [y=sin(x), y=cos(x),..] dann ist die Messung in Grad ziemlich ungeschickt (die Gründe sind erst mal egal), in diesem Fall misst man Winkel in Bogenmaß (=Radianten).Kurz gesagt: will man die Größe eines Winkels wissen, stellt man den Taschenrechner auf Gradmaß ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010309" }
-
Gradmaß und Bogenmaß und wie man richtig damit rechnet, Beispiel 1 | T.01.07
Normalweise berechnet man Winkel in Grad. Wenn man allerdings nicht Winkel braucht, sondern Winkelfunktionen [y=sin(x), y=cos(x),..] dann ist die Messung in Grad ziemlich ungeschickt (die Gründe sind erst mal egal), in diesem Fall misst man Winkel in Bogenmaß (=Radianten).Kurz gesagt: will man die Größe eines Winkels wissen, stellt man den Taschenrechner auf Gradmaß ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010305" }
-
Tangens und arctan und wie man richtig damit rechnet; Beispiel 4 | T.01.06
Der Tangens ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Ankathete aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Ankathete (A) nennt man Arkustangens (im ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010303" }
-
Trainingsangebote der Landeskommission Berlin gegen Gewalt
Liste mit Trainingsangeboten im Bereich: - Interkulturelle Kommunikation und Antirassismus; - Gewaltprävention, Deeskalation und Zivilcourage; - Konfliktbewältigung in Tageseinrichtungen und Schulen mit Exkurs: Konfliktlotsen; - Konfliktbewältigung in Partnerschaft, Familie und Beruf; - Akzeptanz gleichgeschlechtlicher Lebensweisen; - Selbstbehauptung und Selbstverteidigung ...
Details { "DBS": "DE:DBS:30546" }
-
Punkt an Punkt spiegeln; Spiegelpunkt; Symmetriepunkt | A.01.05
Einen Punkt spiegelt man an einem zweiten, indem man sich beide ins Koordinatensystem zeichnet und dann einfach per Hingucken löst. Selbstverständlich gibt es auch eine Formel für die Punkt-Spiegelung, die man anwenden kann (falls man möchte). Falls P(a|b) der Punkt ist, den man spiegeln möchte und S(u|v) der Punkt an welchem gespiegelt werden soll (sozusagen der ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008327" }