Suche nach Funktionsanalyse - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (21) (460)
Mit der Kettenregel eine verkettete Funktion ableiten, Beispiel 1 | A.13.03
Die Kettenregel wendet man an, wenn man verkettete Funktion hat bzw. wenn man irgendwelche sauschwierigen Klammern ableiten muss (z.B. Klammern mit Hochzahlen oder Klammern mit sin/cos, ). Die Hauptaussage der Kettenregel ist die, dass die innere Ableitung mit Mal verbunden hinten angehängt werden muss.
Dreiecksfläche berechnen, Beispiel 2 | A.18.08
Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.
Tangentengleichung / Normalengleichung bestimmen über Tangentenformel / Normalenformel | A.15.02
Die beste Möglichkeit, eine Tangentengleichung bzw. Normalengleichungen zu bestimmen, geht über die Tangentenformel bzw. Normalenformel. Zwar sehen die Formel etwas umständlicher aus, als y=m*x+b, jedoch kann man auch hässliche Aufgaben damit recht gut lösen.
Horner-Schema, Beispiel 5 | A.12.08
Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).
Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 2 | A.18.02
Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.
Polynom bzw. ganzrationale Funktion integrieren; Polynom-Integral bilden | A.14.01
Wie lässt sich ein Polynom ableiten: Polynome (ganzrationale Funktion oder auch Parabeln höherer Ordnung) integriert man (man sagt auch aufleiten) nach einer einfachen Formel. Die Hochzahl wird um eins erhöht, die neue Hochzahl kommt runter in den Nenner(!) und wird mit den eventuell vorhandenen Vorzahlen verrechnet.
Logarithmus-Funktion integrieren bzw. Stammfunktion bilden, Beispiel 6 | A.14.04
Einen ganz bestimmten Typ von Funktionen, kann man mit den normalen Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: m*x+b und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1f: Schnittpunkt berechnen
Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.
Quelle
- Bildungsmediathek NRW (455)
- Bildungsserver Hessen (3)
- Lehrer-Online (1)
- Deutscher Bildungsserver (1)
Systematik
- Mathematisch-Naturwissenschaftliche Fächer (458)
- Mathematik (457)
- Schaltungstechnik und Funktionsanalyse (1)
- Messtechnik, Regelungstechnik (1)
- Ganzrationale Funktionen, Gebrochenrationale Funktionen (1)
- Differentialrechnung (1)
- Energietechnik (1)
Schlagwörter
- Video (452)
- E-Learning (451)
- Analysis (451)
- Funktion (Mathematik) (351)
- Ableitung (224)
- Formel (Mathematik) (213)
- Gleichung (Mathematik) (206)