Asymptote - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (2)
Ergebnis der Suche nach: (Freitext: ASYMPTOTE)
Es wurden 119 Einträge gefunden
- Treffer:
- 11 bis 20
-
Logarithmusfunktion: waagerechte / senkrechte Asymptote und Grenzwert berechnen, Beispiel 3 | A.44.6
Fast jede ln-Funktion hat eine senkrechte Asymptote, die wenigsten haben jedoch waagerechte oder schiefe Asymptoten. Man braucht die Definitionsmenge und lässt nun x gegen die beiden Grenzen dieser Definitionsmenge laufen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009563" }
-
Logarithmusfunktion: waagerechte / senkrechte Asymptote und Grenzwert berechnen | A.44.06
Fast jede ln-Funktion hat eine senkrechte Asymptote, die wenigsten haben jedoch waagerechte oder schiefe Asymptoten. Man braucht die Definitionsmenge und lässt nun x gegen die beiden Grenzen dieser Definitionsmenge laufen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009560" }
-
Logarithmusfunktion: waagerechte / senkrechte Asymptote und Grenzwert berechnen, Beispiel 4 | A.44.6
Fast jede ln-Funktion hat eine senkrechte Asymptote, die wenigsten haben jedoch waagerechte oder schiefe Asymptoten. Man braucht die Definitionsmenge und lässt nun x gegen die beiden Grenzen dieser Definitionsmenge laufen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009564" }
-
Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen, Beispiel 3 | A.43.06
Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009519" }
-
Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen | A.43.06
Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009516" }
-
Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen, Beispiel 4 | A.43.06
Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009520" }
-
Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen, Beispiel 2 | A.43.06
Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009518" }
-
Gebrochen-rationale Funktionen: Asymptote und Grenzwert berechnen, Beispiel 1 | A.43.06
Jede Funktion kann eine (oder mehrere) waagerechte Asymptote, senkrechte Asymptote und schiefe Asymptote haben. Am einfachsten berechnet man senkrechte Asymptoten (auch Polstellen oder Definitionslücken oder Lücken oder Polgerade genannt) in dem man den Nenner Null setzt. Waagerechte Asymptoten erhält man, in dem man x gegen Unendlich laufen lässt. Im Detail bedeutet, dass ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009517" }
-
Asymptote und Grenzwert berechnen | A.16
Asymptoten sind Geraden, an welche sich Funktionen annähern. Man kann einerseits senkrechte Asymptoten berechnen, und mit einer anderen Rechnung kann man waagerechte bzw. schiefe Asymptote berechnen. Das Ziel der Asymptotenberechnung ist zu erfahren, wie sich Funktionen im Unendlichen verhalten. Ganzrationale Funktionen (Polynome) haben nie eine Asymptote. Waagerechte oder ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008896" }
-
Senkrechte Asymptote berechnen, Beispiel 9 | A.16.01
Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008906" }