Suche nach Asymptote - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (11) (119)
Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 2 | A.06.03
Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte x in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...
Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 6 | A.06.03
Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte x in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...
Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 3 | A.06.03
Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte x in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...
Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 1 | A.06.03
Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte x in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...
Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 4 | A.06.03
Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte x in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...
Hyperbel / Hyperbeln berechnen, Beispiel 2 | A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Hyperbel / Hyperbeln berechnen, Beispiel 3 | A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Hyperbel / Hyperbeln berechnen, Beispiel 5 | A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Hyperbel / Hyperbeln berechnen | A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Hyperbel / Hyperbeln berechnen, Beispiel 4 | A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Quelle
Systematik
- Mathematik (119)
- Mathematisch-Naturwissenschaftliche Fächer (119)
- Analysis, Analytische Geometrie (2)
- Zuordnungen, Funktionen (2)
- Grenzwerte von Funktionen (1)
- Geometrie (1)
- Gleichungen, Ungleichungen, Lineare Gleichungssysteme (1)
Schlagwörter
- Funktion (Mathematik) (112)
- Analysis (112)
- E-Learning (112)
- Video (112)
- Asymptote (107)
- Gerade (Mathematik) (57)
- Bruchrechnung (44)