Beschränktes Wachstum berechnen, Beispiel 4 | A.07.03 - kostenloses Unterrichtsmaterial online bei Elixier
Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für begrenztes Wachstum, dass immer ein konstanter Wert zum Bestand dazukommt und ein bestimmter Prozentwert weg geht. Die Funktionsgleichung vom begrenztes Wachstum lautet: f(t)=G+a*e^(-k*t). In einiges Aufgaben fällt das Wort Sättigungsmanko. Die Berechnung von begrenztem Wachstum erfolgt über eine Tabelle und Schritt für Schritt, d.h. aus einem Bestand berechnen wir den Bestand vom nächsten Tag/Jahr/Minute/..., daraus dann den übernächsten Bestand usw. Wir verwenden hierbei die Formel dB(t)=k*(G-B(t)), wobei B(t) der aktuelle Bestand ist, G die Grenze, k irgendein Wachstumsfaktor, dB(t) die Zunahme im aktuellen Zeitintervall. (In der Oberstufe/Studium erfolgt dann eine geschicktere Berechnung über e-Funktionen [Kap.A.30.05]) .
Höchstalter:
15
Mindestalter:
10
Bildungsebene:
Kostenpflichtig:
nein
Lernressourcentyp:
Audiovisuelles Medium
Lizenz:
CC by-nc-ND
Schlagwörter:
Analysis Exponentialfunktion Video E-Learning
freie Schlagwörter:
Begrenztes Wachstum; Beschränktes Wachstum; Wachstumsprozess; Sättigungsmanko; Schranke; Gleichung (Mathematik); Funktionsgleichung; Funktion (Mathematik); Formel (Mathematik)
Sprache:
de
Themenbereich:
Schule mathematisch-naturwissenschaftliche Fächer Mathematik
Geeignet für:
Schüler; Lehrer