p-Wert - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Abstand Punkt-Funktion berechnen, Beispiel 1 | A.21.07
Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt eine Normale auf die Funktion im unbekannten Punkt P(u|f(u)) auf und macht eine Punktprobe mit dem Punkt P. Man erhält den gewünschten Wert für u, welcher der x-Wert des gesuchten Punktes ist. (Abstand Punkt Funktion gehört nicht zu den häufigsten ...
Abstand Punkt-Funktion berechnen, Beispiel 3 | A.21.07
Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt eine Normale auf die Funktion im unbekannten Punkt P(u|f(u)) auf und macht eine Punktprobe mit dem Punkt P. Man erhält den gewünschten Wert für u, welcher der x-Wert des gesuchten Punktes ist. (Abstand Punkt Funktion gehört nicht zu den häufigsten ...
Abstand Punkt-Funktion berechnen | A.21.07
Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt eine Normale auf die Funktion im unbekannten Punkt P(u|f(u)) auf und macht eine Punktprobe mit dem Punkt P. Man erhält den gewünschten Wert für u, welcher der x-Wert des gesuchten Punktes ist. (Abstand Punkt Funktion gehört nicht zu den häufigsten ...
Abstand Punkt-Funktion berechnen, Beispiel 2 | A.21.07
Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt eine Normale auf die Funktion im unbekannten Punkt P(u|f(u)) auf und macht eine Punktprobe mit dem Punkt P. Man erhält den gewünschten Wert für u, welcher der x-Wert des gesuchten Punktes ist. (Abstand Punkt Funktion gehört nicht zu den häufigsten ...
Signifikanz, Signifikanzniveau
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier wird das Signifikanzniveau erläutert.
Mit der Funktionsgleichung f(x) den y-Wert berechnen | A.11.01
Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur Wert der Funktion in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.
Mit der Funktionsgleichung f(x) den y-Wert berechnen, Beispiel 1 | A.11.01
Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur Wert der Funktion in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.
Mit der Funktionsgleichung f(x) den y-Wert berechnen, Beispiel 2 | A.11.01
Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur Wert der Funktion in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.
Mit der Funktionsgleichung f(x) den y-Wert berechnen, Beispiel 3 | A.11.01
Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur Wert der Funktion in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.
Quelle
- Bildungsmediathek NRW (471)
- Bildungsserver Hessen (121)
- Deutscher Bildungsserver (113)
- Lehrer-Online (64)
- Hamburger Bildungsserver (21)
- Select Hessen (21)
- Sächsischer Bildungsserver (8)
- LEIFIphysik (8)
- Elixier Community (8)
- Bildungsserver Rheinland-Pfalz (3)
- Mauswiesel Hessen (3)
Systematik
- Mathematisch-Naturwissenschaftliche Fächer (546)
- Mathematik (471)
- Sozialkundlich-Philosophische Fächer (120)
- Fachunabhängige Bildungsthemen (70)
- Grundschule (67)
- Politik (60)
- Sprachen und Literatur (54)
Schlagwörter
- E-Learning (314)
- Video (305)
- Analysis (254)
- Funktion (Mathematik) (184)
- Gleichung (Mathematik) (160)
- Formel (Mathematik) (156)
- Koordinate (154)
Bildungsebene
- Sekundarstufe I (676)
- Sekundarstufe Ii (373)
- Primarstufe (100)
- Berufliche Bildung (53)
- Hochschule (20)
- Fort- und Weiterbildung (20)
- Elementarbildung (9)
Lernressourcentyp
- Unterrichtsplanung (89)
- Arbeitsmaterial (89)
- Arbeitsblatt (65)
- Lernkontrolle (27)
- Simulation (24)
- Video/animation (19)
- Interaktives Material (13)