lineare Unabhängigkeit - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

lineare Unabhängigkeit - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Serlo: Aufgaben zur linearen Unabhängigkeit
Auf dieser Seite von serlo.org werden typische Aufgaben mit einblendbaren Lösungen zur linearen Unabhängigkeit gestellt.
Lineare (Un)abhängigkeit (Mathematik)
Lineare Abhängigkeit bzw. Unabhängigkeit sind Begriffe aus der Vektorgeometrie.
Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren berechnen, Beispiel 2 | V.10.01
Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...
Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren berechnen | V.10.01
Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...
Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren berechnen, Beispiel 1 | V.10.01
Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...
Lineare Abhängigkeit und lineare Unabhängigkeit von Vektoren berechnen, Beispiel 3 | V.10.01
Die Frage nach linearer (Un)Abhängigkeit sieht man in der vektoriellen Geometrie sehr häufig. Die Definition lautet wie folgt: Gegeben sind beliebig viele Vektoren: A, B, C, und genau so viele Parameter a, b, c, Man betrachtet und löst nun das Gleichungssystem: a*A+b*B+c*C+...=0 Wenn für ALLE Parameter die Lösung a=0, b=0, c=0, rauskommt sind die Vektoren „linear ...