ggT, kgV - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

ggT, kgV - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Basistext und Übungen zum ggT und kgV
Auf dieser Seite von Mathe in Smarties kann man einen Basistext und Übungen zum ggT und kgV herunterladen.
Der größte gemeinsame Teiler (Lernvideo)
In diesem Lernvideo von echteinfach.tv wird den Schülern erklärt, was der größte gemeinsame Teiler zweier Zahlen ist, wie man ihn bildet und welche wichtige Anwendung er hat. Das Video beginnt mit der Vorstellung von ggT und kgV. Anschließend wird ausschließlich der ggT thematisiert.
Zahlentheorie: was ist das und wofür braucht man das überhaupt? | B.10
Die Zahlentheorie befasst sich mit den unterschiedlichsten Eigenschaften von Zahlen. Üblicher Weise versteht man unter Zahlentheorie auch viel kompliziertere Dinge als wir hier machen, so dass Sie eventuell etwas anderes finden, als Sie suchen. Sie finden in diesem Kapitel die Vorgehensweisen zu: 1. den Teilbarkeitsregeln, 2. der Primfaktorzerlegung, 3. dem ggT (größter ...
Primfaktorzerlegung, Beispiel 4 | B.10.02
Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.
Webseite "Arithmetik Digital"
Ziel des Projektes "Arithmetik Digital" ist es, durch anschauliche Videos, elementare mathematische Sätze, Methoden und Inhalte besser zu verstehen. Ein besonderes Augenmerk wird hierbei auf das Veranschaulichen aber auch auf das Beweisen von arithmetischen Zusammenhängen gelegt.
Primfaktorzerlegung | B.10.02
Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.
Primfaktorzerlegung, Beispiel 2 | B.10.02
Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.
Primfaktorzerlegung, Beispiel 3 | B.10.02
Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.
Primfaktorzerlegung, Beispiel 1 | B.10.02
Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.
Teilbarkeit
In diesem Kapitel werden die natürlichen Zahlen unter der Perspektive der elementaren Teilbarkeitslehre untersucht. Dazu werden verschiedene Teilbarkeitsrelationen insbesondere anschaulich (linear oder mit Hilfe von Rechteckfeldern) bewiesen. Diese Beweisarten fußen auf inhaltlicher Vorstellung. Auch werden formale Beweise mit Variablen mit den anschaulichen Beweisen ...