geometrische Figur - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

geometrische Figur - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Prisma (Mathematik)
Ein Prisma ist eine dreidimensionale geometrische Figur. Um ein Prisma zu erhalten, findet die Parallelverschiebung eines n-Ecks (einer Fläche) statt.
Winkelsumme im Dreieck, Winkelsumme im Viereck | T.01.02
In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.
Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 3 | T.01.02
In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.
Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 1 | T.01.02
In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.
Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 2 | T.01.02
In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.
Winkelsumme im Dreieck, Winkelsumme im Viereck; Beispiel 4 | T.01.02
In einem Dreieck ist die Summe aller drei Winkel immer 180°. Die Winkelsumme im Viereck beträgt 360°, im Fünfeck 540°, Man könnte also sagen, dass die Winkelsumme im Dreieck 180° beträgt und dann kommen für jeden weiteren Eckpunkt den die geometrische Figur hat, jeweils 180° dazu. Das ist wunderschön.
Symmetrie (Mathematik)
Symmetrie eines Objektes liegt dann vor, wenn man das Objekt durch eine Kongruenzabbildung wieder auf sich selbst abbilden kann. Die geläufigsten Formen sind Achsensymmetrie und Punktsymmetrie.
Normale (Mathematik)
Die Normale ist eine Gerade, die in einem bestimmten Punkt senkrecht auf eine Funktion oder geometrische Figur steht.
Maximaler Umfang und minimaler Umfang berechnen, Beispiel 2 | A.21.04
Der maximale Umfang (oder minimale Umfang) von Figuren ist nicht sehr häufig gefragt. Falls doch, berechnet man den Umfang (zählt die Längen aller Außenseiten zusammen) und berechnet davon das Minimum/Maximum.
Maximaler Umfang und minimaler Umfang berechnen | A.21.04
Der maximale Umfang (oder minimale Umfang) von Figuren ist nicht sehr häufig gefragt. Falls doch, berechnet man den Umfang (zählt die Längen aller Außenseiten zusammen) und berechnet davon das Minimum/Maximum.